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Abstract 

 

The rapid expansion of remote sensing and information collection capabilities 

demands methods to highlight interesting or anomalous patterns within an overabundance 

of data.  This research addresses this issue for hyperspectral imagery (HSI).  Two new 

reconstruction based HSI anomaly detectors are outlined: one using principal component 

analysis (PCA), and the other a form of non-linear PCA called logistic principal 

component analysis.  Two very effective, yet relatively simple, modifications to the 

autonomous global anomaly detector are also presented, improving algorithm 

performance and enabling receiver operating characteristic analysis.  A novel technique 

for HSI anomaly detection dubbed “multiple PCA” is introduced, and found to perform 

as well or better than existing detectors on HYDICE data while using only linear 

deterministic methods.  Finally, a response surface based optimization is performed on 

algorithm parameters such as to affect consistent desired algorithm performance. 
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RECONSTRUCTION ERROR AND PRINCIPAL COMPONENT BASED 
ANOMALY DETECTION IN HYPERSPECTRAL IMAGERY 

 
 

I.  Introduction 

1.1 Motivation 

An anomaly is something that deviates from what is standard, normal, or 

expected.  The ability to accurately and reliably detect anomalies in real world systems 

can lead to actionable information.  This knowledge can enable better military 

surveillance, cancer or other health problem diagnosis, as well as prevent information 

systems network intrusion, credit card fraud, and system or even structural failure 

(Chandola, Banerjee, & Kumar, 2007) (Chan, Ni, & Ko, 1999).  Unfortunately, real-

world systems commonly involve high-dimensional multivariate data with many 

observations.  To further complicate matters, the data is often wrought with natural 

variability and other factors that conceal signal in noise, making anomaly detection 

difficult (Chandola, Banerjee, & Kumar, 2007).   

Airborne or space-based remote sensors offer the ability to survey extremely large 

land areas quickly and with relatively low cost.   Multi-spectral imaging, and 

subsequently hyperspectral imaging, were developed to yield an efficient increase in 

classification accuracy from these sensors without an expensive increase in spatial sensor 

resolution (Landgrebe, 2002).  Thus, hyperspectral imagery (HSI) has much potential for 

surveillance applications, but it also presents many challenges due to natural noise, 

correlation, sensor variability, spectral mixing, and atmospheric and environmental 

conditions (Eismann, 2012).  The result is a mass of challenging multivariate data, ripe 
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for anomaly detection algorithm development.  Although many anomaly detection 

algorithms are application specific (Chandola, Banerjee, & Kumar, 2007), concepts and 

techniques developed for one area often prove useful elsewhere.  Thus, the intent of this 

research is to improve current, and explore new, anomaly detection applications for HSI, 

advancing the overall field of anomaly detection. 

1.2 Contributions 

In this research, the concept of anomaly detection through residual analysis for HSI 

data reconstructed after dimensionality reduction is presented.  Two new reconstruction-

based HSI anomaly detectors are outlined: one using principal component analysis 

(PCA); and another in the form of non-linear principal components, termed ‘logistic 

PCA.’  A very effective, but mathematically simple improvement to the Autonomous 

Global Anomaly Detector (AutoGAD) algorithm (Johnson, Williams, & Bauer, 2013) is 

also presented.  A novel technique for anomaly detection in HSI dubbed “multiple PCA,” 

is outlined, and found to perform as well or better than existing detectors on HYDICE 

data.  Multiple PCA offers advantages over AutoGAD as its execution time and output 

are entirely deterministic, while offering advantages over other techniques in that it 

provides information as to the nature of anomalies discovered.   Finally, response surface 

methodolgy is employed in order to optimize the ‘multiple PCA’ algorithm. 

1.3 Organization 

A literature review of a background in HSI, relevant HSI anomaly detection 

methods, and statistical concepts to be used herein is first presented in Chapter 2.  

Chapter 3 follows with the presentation of three new anomaly detection techniques for 

HSI, improvements to the AutoGAD algorithm, as well as algorithm optimization.  
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Chapter 4 compares the results of the different anomaly techniques and assesses their 

potential for HSI and other applications.  Finally, Chapter 5 presents conclusions and 

recommendations for further research in the area of HSI.  
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II. Literature Review  

2.1 Chapter Overview 

This chapter outlines fundamentals of HSI, a background of common HSI 

anomaly detection algorithms, and statistical methods for implementing and optimizing 

HSI anomaly detection.  The chapter is thusly divided into five sections: Hyperspectral 

Imagery, Dimensionality Reduction, Anomaly Detection in HSI, Reconstruction Error 

Based Anomaly Detection, and Response Surface Methods.   

2.2 Hyperspectral Imagery 

HSI combines two sensing modalities: imaging and spectrometry (Eismann, 2012).  

Digital imaging, involves the collection of reflected and/or emitted electromagnetic (EM) 

radiation intensity levels stored as pixels to scaled x and y positions. Depending on 

applications, the spatial component may be finely sampled, but with a coarsely sampled 

EM component.  Often pixels estimate an image as the intensity of red, green, and blue 

corresponding to light response of the human eye (Trussell, 1997).  Figure 1 shows the 

common response curve of the retina, and the wide band of wavelengths common digital 

imaging discretizes into just three channels.  
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Figure 1: Retinal Response and Digital Imaging Channels (Trussell, 1997) 

Spectroscopy, on the other hand, involves using spectrometers to measure a single 

point of varying EM intensity as wavelength changes over a nearly continuous region of 

spectrum. Joseph Fraunhofer (1787-1826) invented the first practical spectrometer and 

used it create an accurate mapping of the visible spectra of the sun (Brand, 1995).  

Fraunhofer then adopted the same device for use with a telescope, successfully mapping 

the visible spectra of several stars.  Differences in stellar spectra led to Fraunhofer’s 

supposition that stars were materially different from one another. This conjecture proved 

correct, spectra may be considered the “idioms of atoms and molecules;” molecules 

“announce their presence” through a series of frequencies emitted or reflected in the 

electromagnetic spectrum (Brand, 1995).  A spectrometer thus collects information 

associated with the chemical content of a measured substance due to inherent unique 

quantum molecular properties (Eismann, 2012). 
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Unlike during Fraunhofer’s time, when he painstakingly recorded spectral bands 

with mechanical devices, photoelectric detectors first developed during the Second World 

War, enable digital spectral analysis beyond visible EM radiation with blazing speed 

(Osborne, Fearn, & Hindle, 1993). Regions of the EM spectrum prove useful for the 

identification of certain chemical structures, e.g. spectral analysis in the near infrared 

region (700-2500 nm) is particularly useful for classifying hydrogen bonds due to the 

nature of molecular vibrations in polyatomic molecules involving hydrogen (Osborne, 

Fearn, & Hindle, 1993). 

In HSI, each pixel is akin to a spectrometer and contains spectral information; an 

HSI sensor can thus enable both object and material detection as well as 

classification/identification of a given imaged scene (Eismann, 2012).  By definition, HSI 

are those images containing 20 or more contiguous spectral bands; this differs from 

multispectral imagery where spectral bands average larger segments of the EM spectrum 

(Eismann, 2012).  The Hyperspectral Digital Imagery Collection Experiment (HYDICE) 

airborne sensor data used in this research therefore differs from the low-spectral 

resolution (coarse spectral sampling) illustrated in Figure 1, by covering the spectrum 

between 400 nm to 2500 nm contiguously with a fine spectral sampling of 10 nm 

(Nischan, Kerekes, & Baum, 1999). 

HSI data is commonly structured as a three dimensional array or “cube,” with the 

first two dimensions representing the spatial component and the third comprised of the 

spectrum (Stein, Beaven, Hoff, Winter, Schaum, & Stocker, 2002).  For mathematic and 

matrix manipulation reasons, most image processing algorithms require the data to be 

transformed into a two-dimensional data matrix in order to perform anomaly detection or 
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classification. The resultant data matrix consists of a matrix with  pixels each 

comprised of spectral bands as depicted in Figure 2.  

 
Figure 2: Hyperspectral Data. Reprinted from (Williams J. , 2012) 

 HSI is currently used in a wide range of applications including: remote sensing, 

terrain classification, agricultural and environmental monitoring, geological exploration 

(Stein, Beaven, Hoff, Winter, Schaum, & Stocker, 2002), mine detection (Banerjee, 

Burlina, & Diehl, Banerjee SVDD, 2006), bathymetry (Sandidge & Holyer, 1998), urban 

area classification (Bedikstsson, Palmason, & Sveinsson, 2005), drug detection  

(Rodionova, 2005), law enforcement  (Elderding, Thunen, & Woody, 1991), as well as 

search and rescue applications (Eismann, 2012).  The basic concept and method of data 

collection are presented in Figure 3; HSI imaging systems generally build an image 

sequentially by capturing spectral pixel information with a one or two dimensional 

detector array aimed by pointing and stabilization systems.  The HYDICE sensor, which 

collected the data used in this research, is a pushbroom system where images are captured 

n × p n

p
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with a linear detector array (one dimensional) oriented perpendicular to the motion of the 

platform as in Figure 3 (Eismann, 2012).  The pushbroom HYDICE sensor differs from 

whiskbroom sensors, such as AVIRIS, which capture a one-dimensional array oriented 

parallel to the direction of travel and scanned side-to-side creating a desired image width.  

Additional HSI methods exist, including step-stare systems, that capture imagery using a 

two-dimensional array (Eismann, 2012), but these are unexplored herein.  Collection 

methods vary in performance under different pointing schemes and configurations as 

seen in (Eismann, 2012), and some could lend themselves to on-line HSI anomaly 

detection as seen in (Bush, 2012). 

 
Figure 3: HSI Acquisition and Utility. Reprinted from (Manolakis, 2002) 
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For material recognition, HSI collected radiance is matched against a known 

spectral signature (radiance), or an atmospherically corrected reflectance signature from a 

ground experiment. Varying factors such as ground temperature, atmospheric scattering 

and absorption, solar angle, presence of clouds, shadowing, spectral mixing, and viewing 

geometry can alter the transmission of radiance and emittance to the HSI sensor 

(Eismann, 2012).  These dynamics must be estimated and compensated for in order to 

effectively recognize targets using known spectral information. 

One area of interest are algorithms that can use HSI data to detect and identify 

small or sub-pixel (spectrally mixed) objects (Nasrabadi, 2014).  In order to compare a 

ground collected reflectance signal, recognition algorithms require calibration to correct 

spectral signature differences in images due to in scene conditions; this is accomplished 

through estimation methods such as in-scene methods, like vegetation normalization, and 

model based methods, such as MODTRAN (Eismann, 2012).  An example of spectral 

signatures corresponding to surface contents in is shown in Figure 4.  Anomaly detection 

remains of key importance, as it does not require a priori information, spectral matching, 

or the estimation methods mentioned above (Stein, Beaven, Hoff, Winter, Schaum, & 

Stocker, 2002). 
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Figure 4: Spectral Signatures. Reprinted from (Smetek, 2007) 

 Adding another complication, HSI data is highly correlated, both spectrally and 

spatially (Williams, Bihl, & Bauer, 2013).  HSI, like other imagery, increases in spatial 

correlation as resolution increases with pixel band intensities similar to neighborhood 

pixels (Ranzato, Krizhevsky, & Hinton, 2010).  This inter-pixel correlation brings into 

question assumptions of normality and independence inherent in many statistical methods 

used to study larger multivariate problems such as hyperspectral imagery. Furthermore, 

intra-pixel correlation caused by linear spectral mixing reduces the information content 

within pixels and thus dimensionality reduction is appropriate (Eismann, 2012). 

2.3 Dimensionality Reduction 

As with any “big data” problem, the high volume of data inherent within HSI 

remains demanding on detection algorithms and potentially the storage and transmission 

capability of devices associated with data collection (Banerjee, Burlina, & Diehl, 2006) 

(Becker, King, McMullen, & Fahsi, 2013) (Bush, 2012) (Johnson R. J., 2008). 
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Furthermore, the actual information content of finely sampled bands and spatial pixels is 

low due to inherent correlation and redundancy. Thus, this larger amount of data often 

adds more noise than independent pieces of information, and makes algorithms more 

computationally expensive (Licciardi, Del Frate, Schiavon, & Solimini, 2010).  Methods 

to reduce the dimensionality of HSI are therefore highly desirable and perhaps even 

necessary to perform hyperspectral data analysis. The primary dimensionality reduction 

techniques are either feature selection based, where original bands are selected, or feature 

extraction based, where a transform is used to project the data into a new space. 

Considered in this research are the feature extraction methods: principal component 

analysis, logistic principal component analysis, and independent component analysis 

(ICA). 

2.3.1 Principal Component Analysis  

Principal components (PCs) are linear combinations of the original variables 

extracted such that they are uncorrelated and ordered by variance.  The first PC accounts 

for the largest amount of the total variation in the data and the second PC accounts for the 

second most and so on (Dillon & Goldstein, 1984). Through this concept, PCA achieves 

dimensionality reduction on a data matrix, , with  exemplars and  variables, 

while still explaining an appropriate amount of variation.  In practice, PCs are calculated 

through determination of p  eigenvalues, λ1×p = (λ(1),λ(2),...,λ( p) ) , and p eigenvectors, 

Vp×p = V(1),V(2),...,V( p)⎡⎣ ⎤⎦ , of the sample covariance matrix, , or sample correlation 

matrix,Rp×p , of a data set with original dimensionality . This is accomplished by 

solving  simultaneous linear equations: 

Xn×p n p

Sp×p

p

p
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 (S − λI )V = 0  (1)  

where S  is the sample correlation matrix and I is an identity matrix. The resultant 

eigenvectors are arranged in descending order according the magnitude of their 

corresponding eigenvalues.  The solutions are orthogonal, converted to unit length, and 

provide a solution to “diagonalize” the original covariance structure thus resulting in the 

product:  

 

V 'SV = Λ ; where Λ =

λ(1)
λ(2)

λ( p)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

. (2)  

 Thus, it can be seen that in this new covariance structure there is no correlation 

between variables while the total variance in the original structure is retained (Dillon & 

Goldstein, 1984).  The linear transformation described by V  is then performed on the 

original data with the resultant matrix being the full matrix of principal components, , 

where 

 Tn×p = Xn×pVp×p . (3)  

The first components are generally kept such that very little useful information is 

discarded and the latter principal components are assumed to contain mostly noise 

(Eismann, 2012).  Furthermore, principal components are commonly “whitened” and 

centered prior to use in algorithms.  Whitening refers to scaling all PCs such that they 

share a variance of 1.0, and centering refers to subtracting the mean vector from each 

data point such that all variable means are zero (Eismann, 2012).  The whitening and 

centering transformation is shown in (4), where Λ−12  is a matrix where all the diagonal 

T

k
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elements are the inverse square root of the eigenvalues, μp×1 = (μ(1),μ(2),...,μ( p) )
T  is a 

matrix of the feature means, and 1p×1 is a matrix of ones: 

 Zn×p = (X − 1μT )VΛ−1
2.  (4)  

 Determining the number of components to retain, k, involves various heuristics 

and rules as explored by (Bigley, 2013), (Peres-Neto, Jackson, & Somers, 2003), and 

(Jackson D. A., 1993).  One standard rule of note is Kaiser’s criterion where eigenvalues 

greater than the mean are retained; during PCA on a sample correlation matrix this 

simplifies to eigenvalues greater than one.  This and many other PCA dimensionality 

assessment techniques are addressed in (Jolliffe, 2002), (Bigley, 2013), (Peres-Neto, 

Jackson, & Somers, 2003), and (Jackson D. A., 1993).   

In 1933, Hotelling (Hotelling, 1933), who coined the term ‘principal 

components,’ surmised that there was a smaller “fundamental set of independent 

variables…which determine the values of the original  variables.”  Thus the technique 

was developed to uncover underlying data structure while simultaneously considering the 

concept of compression and reconstruction, both of which will be explored later in this 

paper. From an information theory perspective, PCA is the most efficient method of 

dimensionality reduction due to its accounting for the most variance in a dataset with the 

least number of dimensions (Christophe, 2011). This makes it a very tempting technique 

for use in hyperspectral imagery; however, its application in HSI is not without 

controversy, see (Cherivadat & Bruce, 2003) (Prasad & Bruce, 2008).  Despite potential 

issues, PCAs use on HSI is wide spread, as seen in (Eismann, 2012), (Farrell & 

Mersereau, 2005), (Shan & Rodarmel, 2002), and (Fountanas, 2004). 

p
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In general, the first principal component of HSI data corresponds to broadband 

intensity variation across the spectra.  “The next few capture the primary global spectral 

differences across the image (Eismann, 2012).” What might be considered anomalies, or 

the “statistically rare spectral features” dominate the trailing components with low 

variance.  For most HSI or other high dimensional data spaces, a small set of leading 

principal components is assumed to capture a predominant amount of variance in the data 

(Eismann, 2012) (Landgrebe, 2002).  For example, Figure 5 illustrates the variance 

structure for one HYDICE image used in this research, ARES1D, with 210 spectral 

bands.  This shape can safely be considered typical and in this case, 99.2% of the 

variation is explained in just the first 5 out of 145 principal components and over 99.9% 

in the first 39 (this is not to say that variance explained is always a reliable indicator of 

the dimensionality of particular data).   
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Figure 5: Example of HSI PC Variance Structure 

As noted earlier, trailing components may represent rare spectral features; 

therefore, despite explaining minimal variance they may be important for anomaly or 

target detection algorithms.  Figure 6 contains plots of the first sixteen PCs of ARES1D, 

an aerial HYDICE image of a desert scene containing six vehicles emplaced on a road 

vertically through the image. For the purposes of this research, the vehicles are manmade 

objects of interest (anomalies). As indicated by (Eismann, 2012), the first PC does 

represent broadband intensity variations; note shadows and contrast due to sunlight 

originating from the upper side of the image.  The following principal components appear 

to represent other features such as desert vegetation, roads, or perhaps variations in soil 
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composition.  Interestingly, by PC 11 what remains appears to be mostly noise, while the 

vehicles faintly appear again in PC 13 and PC 14.    

 
Figure 6: ARES1D, Leading 16 PCs 

 In this scene the anomalies appear to be very easy to discern from the rest of the 

scenery using the first few principal components.  This is mostly due to contextual cues 

arising from the linear arrangement and location of the tanks on a road.  PC 2 shows the 

most obvious separation of the anomalies from the scene itself, it seems that all of the 

manmade objects are geometrically distant from the second principal component’s origin. 

Common spectral characteristics of anomalies in this image are most likely the reason for 

all targets appearing clearly in the same PC.  It is, however, far more common for 

anomalies to vary in material composition and spectral structure within a scene; these 
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would most likely become discernable in different PCs. In the case of ARES1D, it is 

interesting to note that in some of the trailing PCs shown in Figure 7 (52 and 58), the 

man-made anomalies appear again within what appears to be mostly noise.  Without 

shape or contextual cues it is difficult to use these latter PCs to detect outliers or 

anomalies due to high levels of noise as well as structural artifacts present. For example, 

the vertical features in Figure 7 may be artifacts due to the motion of the pushbroom 

sensor, and often eclipse other local features.  In PC 52 some of the manmade anomalies 

become unrecognizable due to a high intensity vertical artifact traversing the road.  

 
Figure 7: ARES1D, PCs 51-66 
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2.3.2 Logistic Principal Component Analysis 

 Thought experiments on gases being microscopic systems interacting classically, 

as in billiards, led Ludwig Boltzmann to a theoretical explanation of time irreversibility, 

with the reach of his concepts extending into modern statistical mechanics as the second 

law of thermodynamics (Flamm, 1983).   Here, we find the probability that a given 

system will be in a specific quantum state, , of all possible states, S, with energy, , at 

temperature,  (Kittel & Kroemer, 1980).  This probability is derived to be of the form: 

 

 
(5)  

The numerator above is known as the Boltzmann factor (Kittel & Kroemer, 1980). The 

sum of all possible Boltzmann factors for a given system is called the partition function 

and forms Z (Goldstein, 2002) (Kittel & Kroemer, 1980): 

 
 

(6)  

As one can gather from above, quantum states with low energy are more likely.  

These systems are dynamic but always “desire” to be in the lowest energy levels as 

governed by the energy function and ultimately Boltzmann’s concept of entropy (Kittel & 

Kroemer, 1980).  This construct enables dimensionality reduction through Monte-Carlo 

methods that simulate the activity of a specially structured energy-based system.  These 

systems essentially train a map of the original data features to a smaller number of 

dimensions using the energy function from above (Hinton, 2010). 

2.3.2.1 A Bayesian Connection 

It is a useful stretch of logic to equate the denominator in a Bayesian inference 

problem to the partition function above. Consider the directed acyclic graph (DAG) in              
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Figure 8 forming a Bayesian belief network. Here, arrows denote causality, one-way 

dependence between binary random variables (Duda, Hart, & Stork, 2001). 

 

  

 

 

 
 

 

 The probability that one was stressed given they became ill may be obtained by 

marginalizing over all combinations of the system where one became ill.  This is simply 

an extension of Bayes’ rule, and considering all potential configurations of the random 

variables in the DAG akin to all possible quantum states in a physical system, a 

connection to the partition function becomes apparent.   

Common techniques in machine learning might really all be boiled down to some 

Bayesian form.  In classification, we try to maximize the intersection of the event that we 

call an object as class A, and the event that it actually is class A.  A problem with most of 

these models is the implication of one-way or directed causation/dependence. One might 

ask, “but is this how nature works?” while in reality, “No, there is most likely 

interdependence.”   

Further considering the above DAG, if we assume that “your diet and health 

affect your stress level, and your health affects your diet,” then a network of 

interdependent random variables like this can be modeled as a Markov random field 

(Kindermann & Snell, 1950). This conceptualization looks similar to a Bayesian Belief 

Network except there are no arrows denoting one-way dependence, only lines denoting 

             Figure 8: DAG (one way dependence) 
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mutual dependence.  The example above may be reconsidered as the Markov random 

field: 

 

  

 

   

 

Now, imagine adding another node only connected to stress called “job status” 

with no connection between the “ill” and “diet” node.  The “job status” random variable 

would be considered statistically independent of the “diet” and “ill” random variable, but 

would be statistically dependent on the stress variable.  Only neighboring or connected 

variables are dependent.  This characteristic is called the local Markov property 

(Kindermann & Snell, 1950).  Further, the system is considered a Markov process in that 

the probability of a configuration at time t only depends on the system’s state at time t-1 

(Kindermann & Snell, 1950). Hence, the evolution of these systems may be modeled as a 

Markov chain where the probability of the system moving to a given configuration can be 

derived from a form of the energy function used in thermodynamics (Kindermann & 

Snell, 1950). 

2.3.2.2 Extending to Boltzmann  

A useful formulation using the energy function for effecting dimensionality 

reduction is,  

 

 
(7)  

P(S = s) = 1
Z
e
− wijs jsi∑

Figure 9: Markov Random Field (two-way dependence) 
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where, wij, is simply a positive or negative weight denoting a level of connectedness or 

dependency between two nodes, and si and sj are the binary states of individual nodes 

(Duda, Hart, & Stork, 2001).  For computational tractability, ensure that wij = wji.  To 

illustrate, consider the simple Markov random field (MRF) and its corresponding table of 

energies and probabilities given in Figure 10.  The structure consists of three stochastic 

binary random variable units.  Once again, Z is simply the sum of all the Boltzmann 

factors and low energy states are more likely.  

 

 
Figure 10: Energies and Probabilities for a Simple MRF 

2.3.2.3 Restricted Boltzmann Machines 

The MRF in Figure 10 is called a Boltzmann machine (Hinton & Sejnowski, 

1984).  A very useful form of these is the restricted Boltzmann machine (RBM), 

originally called harmoniums by (Smolensky, 1986). Their formation consists of two 

layers of weights connecting stochastic binary variables denoting mutual dependence 

with no intralayer connections; this structure is called a bipartite graph, Figure 11.  

A B C
w1=-1 w2=2
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Figure 11: Restricted Boltzmann Machine (RBM) 

In RBMs for machine learning there are hidden and visible layers, each consisting 

of mutually independent stochastic binary random variables.  This is exceptionally 

convenient because if we “clamp” on or set the values of the visible units, we can 

instantly know the probability of each of the hidden units (Hinton G. , 2007).   By 

computing the effect of a state change for a single hidden or visible unit on the energy of 

the RBM system, the probability of any given unit being “on” (or 1) is derived to be the 

sigmoid function: 

 

 
(8)  

The function in (8) is derived from the Boltzmann distribution, and ensures each 

random variable unit will likely transition to a state where the change in energy of the 

system moves the system towards an overall lower energy state (Hinton, 2007) If the 

system is “unclamped” it will eventually reach “thermal equilibrium” where it hovers 

around a few likely low energy states, only occasionally existing in any higher energy 

state (Hinton, 2007). 

 In order to use a restricted Boltzmann machine to effect dimensionality reduction 

a visible unit is required for each data variable.   An appropriate amount of hidden units is 

then selected (at this point this is almost arbitrarily chosen depending on the application, 

Pi=1 =
1

1+ e−ΔEi



23 

situation, and prior working models; a general starting point can be found in (Hinton, 

2010)).  Training the RBM requires adjusting the weights between units such that if the 

system, as a Markov chain, was allowed to advance infinitely as in Figure 12, the 

distribution of realized states of the visible units would resemble that of the input 

multivariate data (Hinton & Sejnowski, 1984). 

 The most accurate way of training an RBM is to first clamp on the visible units 

with an exemplar from our data, and then allow the system to reach thermal equilibrium 

(this takes one step in the restricted Boltzmann machine) (Hinton, 2007).  After this, the 

visible units are unclamped allowing the system to run freely and move towards thermal 

equilibrium or low energy states, Figure 12.  Weights are then adjusted to make the 

system more likely to favor outputs like the given exemplar.  

 
Figure 12: RBM Markov Chain 

With the change in the weights between units updated as: 

 
 

(9)  

Where  is an arbitrarily small learning rate (Hinton, 2007). 

The energy function generally used in construction of RBMs is slightly different 

from that presented in (7) as it includes bias terms.  It is of the form  

 E(v,h) = aivi
i∈visible
∑ − bjhj − vihjwij

i, j
∑

j∈hidden
∑  (10)  

t=0 clamped  t=1 t=2 t=Infinity 

vihj
0 vihj

∞

Δwij = ε vihj data
− vihj model( )
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where, vi and hj are the binary states of the hidden and visible units i and j ,  ai  and bi are 

their respective biases, and wij  is the weight between them. The update rules for bias 

terms is similar to that presented in (9), and are of the form 

 Δai = εa vi data
− vi model( )    &   Δbj = εb hj data

− vj model( )  (11)  

Where εa  and εb are the visible and hidden unit bias learning rates.   

In the above methodology a Monte-Carlo simulation of the Markov chain is run 

for a very long time and the average output distribution is then compared to our initial 

distribution (Hinton, 2007).  This long simulation is computationally impractical, so 

Hinton created a less accurate method, albeit proven effective through experimentation, 

called contrastive divergence (CD) (Hinton, 2007).  CD training only requires the 

Markov chain to move one (or very few) time step(s) and compares the random variable 

distribution to the distribution at time zero and makes the appropriate weight changes 

using the same formula as above. Pseudocode for the contrastive divergence technique 

(excluding bias updates and with only one step) is shown in Figure 13 (Hinton, 2007).   

 
Figure 13: Pseudocode for RBM Training 
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2.3.2.4 Deep Belief Networks and Logistic Principal Components 

The result of the described training method is a Boltzmann machine that, when 

allowed to run freely, tends to transition between states with visible units that correspond 

to exemplars in a multivariate data distribution.  Interestingly, the RBMs are then 

‘stacked’ on top of each other.  After training the first machine, an additional layer is 

added consisting of another restricted Boltzmann machine where the visible units are set 

to the states of the previous layers’ hidden units during training.  This is repeated as many 

times as desired, creating what is called a “deep belief network” (Hinton, 2007). 

To result in dimensionality reduction, the final RBM has less hidden units than 

the original hidden inputs, while the first has more.  The final hidden layer probabilities 

when the first layer is clamped to an exemplar become ‘encoded’ logistic principal 

components (Hinton, 2007). This model can then be ‘unfolded’ by adding an equal 

number of opposite layers using transposes of the initial base layers’ weights as in Figure 

14.  This forms a ‘decoder’ of the lower layers.  The outputs of the decoder become 

probabilistic reconstructions of the original data (Hinton, 2007). 

This entire system may now be treated as a normal feed forward neural network.  

It can be ‘fine-tuned’ using back-propagation to further adjust the weights so that the 

system more closely models the input distribution.  If layer sizes are chosen appropriately 

(this is essentially more of an art than a science) the decoder outputs are highly accurate 

reconstructions, or what Hinton calls ‘confabulations’ of the original data (Hinton, 2007).  

The energy-based model becomes a neural network that ‘understands’ the probability of 

an image or data vector taking on a certain form. The structure described is illustrated in 
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Figure 14 for obtaining five logistic principal components from an original data vector 

with 184 features. 

 
Figure 14: Deep Belief Network 

2.3.2.5 Non-Binary Units 

Hinton (2010) shows that the previously described form of RBMs works best 

when the inputs approach binary probabilities, such as do the pixels in the Mixed 

National Institute of Standards and Technology database (MNIST) of handwritten digits 

used in (Hinton, 2007).  He suggests a form for of the energy function for linear units 

with independent Gaussian noise for natural images as shown in (12).  Here, vi  is the 

Gaussian state of the visible unit j, hj is the binary state of the hidden unit j , ai  and bi
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are their respective biases, wij  is the weight between visible and hidden units, and σ i  is 

the standard deviation of the visible unit noise.    

 
E(v,h) = (vi − ai )

2

2σ i
2

i∈vis
∑ − bjhj −

vi
σ i

hjwij
i, j
∑

j∈hid
∑  (12)  

 
The RBMs in this research will convert the hyperspectral data to what can be 

considered probabilities and not use any Gaussian units as this proved useful for anomaly 

detection and seemed to provide adequate representations of the data.  Gaussian units 

require orders of magnitude smaller weight updates because the output is not bounded 

between 0 and 1, as well needing far larger hidden layers (Hinton, 2010).  In general, 

Gaussian RBMs take far longer to train are far less stable than those with binary visible 

units (Krizhevsky, 2009) (Hinton, 2010).  Further, hyperspectral data has been shown to 

be non-Gaussian (Eismann, 2012), which might further cause instability in the energy 

function.  Many unsuccessful attempts at training non-binary visible units led the author 

to use the rougher, yet effective approximation to binary inputs for hyperspectral 

anomaly detection.  

2.3.3 Independent Component Analysis 

Independent Component Analysis (ICA) seeks to find a set of independent source 

signals such that each extracted component is statistically independent. This differs from 

PCA, which extracts a new basis for the data in which all vectors are uncorrelated.  ICA 

is based on a realistic assumption that different physical processes will generate different 

and independent signals (Stone, 2004). The signals are then collected at a sensor as a 

linear combination of these independent signals. The technique is commonly used (and 
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theoretically can only be used) when the Gaussian assumption is violated (Eismann, 

2012). 

In ICA it is assumed that independent source signal vectors, , are ‘mixed’ 

together to form a data vector, , linearly by an unknown mixing matrix  (Stone, 

2004).  This process is shown in (13) and since the object of ICA is to separate the 

original signal sources  

  (13)  

into independent vectors, algorithms in ICA seek to find the inverse of the mixing matrix, 

, commonly denoted as,  (Stone, 2004).  This matrix divides the data into its source 

signals as represented in (14). Solving for is, in general, computationally complex and 

relies on maximizing total negentropy: the total divergence of the transformed vectors 

from a Gaussian mixture with the same covariance matrix (Eismann, 2012).   An efficient 

method of ICA called FastICA (Hyvärinen, 1999), finds the components of using 

Newton’s method.    

  (14)  

2.3.4 Auto-Associative Neural Networks 

Non-linear PCA, an artificial neural network approach, uses neural networks to 

achieve dimensionality reduction without first applying energy based learning to the 

model as in (Hinton, 2007).  A network architecture with an internal “bottleneck” layer 

sandwiched between two other hidden layers with inputs mapped to the same outputs was 

presented in (Kramer, 1991).  The bottleneck neurons represent the encoded non-linear 

principal components.  Liccardi et al. (Licciardi, Del Frate, Schiavon, & Solimini, 2010) 

presented findings for Kramer’s method applied to HSI indicating, “good computational 
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efficiency,” and “land cover classification higher than those obtained by some other 

techniques.” 

2.3.5 Random Projections 

A matrix with random orthogonal unit length vectors may be used to map 

multivariate data with dimensions into a smaller feature space (Kaski, 1998).  Ding and 

Kolacyk  (Ding & Kolacyk, 2010) use this concept for privacy reasons, and to reduce the 

computational complexity of PCA on a large database to effect anomaly detection.  For 

this reason it is considered as a possible augmentation for a PCA reconstruction based 

anomaly detector for use in hyperspectral data.   

2.3.6 Kernel Principal Component Analysis (KPCA) 

In Kernel PCA, data is first mapped into a higher dimensional feature space using 

kernel methods, with the data operated on in the higher dimensional space and then 

projected back to a lower dimensionality (Nasrabadi & Kwon, 2005).  Applying the 

“kernel trick,” and then conducting normal PCA on the resultant features can achieve 

dimensionality reduction (Bengio, Delalleau, Le Roux, Vincent, Vincent, & Oimet, 

2004). 

2.4 Anomaly Detection in HSI 

Using HSI for remote detection of anomalies and potential objects of interest 

requires algorithms that can recognize pixels or groups of pixels that exhibit unusual 

spectral signatures with respect to the global image. The only assumed a priori 

information is that anomalous pixels differ from the global or local background in some 

manner, that they are significantly less common than the background, and are small in 

relative size to a physical scene. Due to imaging system considerations and collection 

p × k

p



30 

altitudes, the ground sampling distance (GSD) of HSI sensors also normally exceeds the 

anomaly size, resulting in sub-pixel mixing (Eismann, 2012).  Further mixing of spectral 

signatures occurs due to path transmission and physical contaminants occluding targets 

(Eismann, 2012) (Wong, 2009). In military applications, camouflage, paint, or other 

techniques may be used to disguise targets as the background, and increase the difficulty 

of anomaly detection (Eismann, 2012).   

The remainder of this section will outline several relevant techniques for 

hyperspectral anomaly detection; two common preprocessing steps would normally be 

used in the implementation of all of these methods.  First, the data cube must be 

converted to a matrix with  pixels each comprised of spectral bands as depicted 

in Figure 2.   Second, in most HSI data, there are a number of spectral bands that are 

almost entirely absorbed by the atmosphere due to well-known molecular properties, e.g. 

water absorption bands, and prohibitively large amounts of noise. The removal of these 

bands greatly increases the efficiency and effectiveness of most anomaly detection 

algorithms by increasing the signal to noise ratio inherent in the data.  

The anomaly detection performances of various algorithms are compared later in 

this paper.  Methods in this research will be judged according to their true positive 

fraction (TPF), false positive fraction (FPF), and label accuracy (LA). TPF is the ratio of 

the total number of anomalous pixels correctly classified to the actual number of existing 

anomalous pixels.  FPF is a similar measure, only it is the number of falsely labeled 

anomalies divided by the total number of non-anomalous pixels.  LA compares the 

number of anomalous target pixels correctly classified to the total number of pixels 

n × p n p
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classified as anomalies.  The formulations of these three fractions cause their ranges to all 

be [0, 1].   

Receiver operating characteristic (ROC) curves will also be used to assess 

detector performance.  The ROC curve is a plot of TPF by FPF as a detector threshold is 

adjusted with TPF on the vertical axis and FPF on the horizontal (Fawcett, 2006).  It is 

desirable for the curve to track as closely to the top left corner of the plot as possible 

meaning TPF is almost 1 before FPF climbs significantly above zero.  One way to 

measure this that will be considered later on in this research is the area under the ROC 

curve (AOC), it is easy to note that the optimal value for the AOC is 1.0.  ROC curves 

can illustrate the classification potential of different techniques, but only assist in finding 

an actual operating point for a detector threshold.  A classification method may have 

fantastic ROC curves, and yet be of little use if a consistent optimal threshold or 

operating point across different images is not possible.  

2.4.1 Mahalanobis Distance Detector 

The Mahalanobis distance detector for HSI uses a test statistic calculated from an 

images covariance matrix, , and mean vector of the entire image, X . The test statistic 

is formulated where, Xi , is a single data vector or pixel spectrum (Eismann, 2012)   

 rMD (Xi ) = (Xi − X)
T S−1(Xi − X)  (15)  

Under the assumption of multivariate normality, rMD , is Chi-Squared distributed.  

Statistical tests based off of this distribution may then be used to declare anomalies as 

will be described in the following section. By taking into account covariance, S , the 

Mahalanobis distance essentially measures the distance from the center of the 

S
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background distribution while compensating for assumed global multivariate elliptical 

scattering (Eismann, 2012). 

2.4.2 Reed-Xiaoli (RX) Detector 

The Reed-Xiaoli detector is a variation of the Mahalanobis distance detector 

commonly used in HSI anomaly detection. It was developed to better detect anomalies by 

calculating local rather than global covariance statistics to mitigate problems with spatial 

correlation and non-stationary statistics (Reed & Yu, 1990).  The statistic’s calculation is 

almost identical to that of the Mahalanobis distance except that is calculated locally with 

the mean vector, Xlocal , and the covariance matrix, Slocal , estimated from Nlocal pixels 

surrounding the test pixel where 

 
Xlocal =

1

Nlocal

Xi
i=1

Nlocal

∑ ,  (16)  

and 

 
S−1
local =

1

Nlocal −1
(Xi − Xlocal

)
i=1

Nlocal

∑ (Xi − Xlocal
)T .  (17)  

With the resultant formulation for the RX detector 

 rRX (Xi ) = (Xi − Xlocal
)T S−1

local (Xi − Xlocal
).  (18)  

In HSI, the local background consists of a square block of pixels surrounding the 

pixel under test that effectively moves pixel by pixel through the image as shown in 

Figure 15. The pixel under test’s Mahalanobis distance from the center of the “moving 

window” of area N , is then compared at a given confidence level, α , to the threshold,

χα
2 , with N −1  degrees of freedom.  Pixels exceeding this threshold are declared 

anomalies (Reed & Yu, 1990) (Eismann, 2012).  The fact that the test for anomalous data 
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is derived form a generalized likelihood ratio test (GLRT) allows the detector to operate 

with a constant false alarm rate (CFAR) despite background variation (Reed & Yu, 

1990).   

 
Figure 15: RX Moving Window. Reprinted from (Williams, Bihl, & Bauer, 2013) 

The RX algorithm is generally considered the benchmark anomaly detection 

method for multispectral imagery (Nasrabadi, 2014).  The CFAR property also promises 

a relatively consistent FPF.  This does not mean, however, that the method is without 

problems.  The background covariance matrix estimation and its inversion at each pixel 

demand much computational power.  Conducting RX on the leading principal component 

space (a form of subspace RX or SSRX) of an image is a useful technique to lessen 

computation burden, but gains speed and cleaner background estimation at the cost of 

possibly neglecting important information in the discarded principal component 

directions (Eismann, 2012). 

Window size also clearly affects the results of the background estimation and 

subsequent anomaly classification.  False alarms as pixels that would not be called 
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anomalies on a global scale might have high RX scores (Wong, 2009).  An example of 

this would be a tree in the middle of a field.  If anomalies are large, they may not appear 

as anomalies within a small RX window.  Variations in background within a given 

window might even result in the RX algorithm being reduced to an edge detector, 

creating high FPF rates (Wong, 2009).   

  Different methods for obtaining better estimations of the local background have 

been attempted, with geometric methods being the most common.  One such method 

excludes an inner guard band from the background covariance matrix, while another 

considers an inner window region and outer window region when estimating the same 

(Nasrabadi, 2014) (Eismann, 2012).  Williams et. al. (Williams, Bihl, & Bauer, 2013) 

present a linear window shape to reduce spatial correlation issues present in all imagery.  

Finally, an iterative RX method to prevent anomalies from corrupting background 

estimation was presented by Taitano, Geier, and Bauer (Taitano, Geier, & Bauer, 2010). 

2.4.3 Autonomous Global Anomaly Detector (AutoGAD) 

While RX considers local statistics for anomaly detection, the autonomous global 

anomaly detector  (AutoGAD), a new approach detects anomalies globally in an image 

(Johnson, Williams, & Bauer, 2013).  AutoGAD is a PCA and ICA-based anomaly 

detector that advances the work on remote sensing and ICA of (Chiang, Chang, & 

Ginsber, 2000), (Robila & Varshney, 2002) and (Chen & Zhang, 1999).  The algorithm 

fully automates the process of anomaly detection and generates fast global anomaly 

declarations with minimal false alarms (Johnson, Williams, & Bauer, 2013).   

AutoGAD first reshapes the data and removes absorption bands as outlined in 2.2.  

Dimensionality reduction is then achieved by PCA.  The dimensionality of a 



35 

hyperspectral image is assessed through a geometric method using the maximum 

Euclidean distance from the log-scale secant line (MDSL) (Johnson R. J., 2008).  The 

technique estimates the breakpoint between noise and signal by locating the ‘knee’ in the 

eigenvalue curve (logarithmic scale) and thereby provides a rough solution to methods 

outlined by (Stocker, Ensafi, & Oliphant, 2003).  Essentially a ‘secant’ line is drawn 

between the first and last eigenvalue in a log scale.  The assessed dimensionality, k , 

corresponds to the eigenvalue with the maximum perpendicular distance from the secant 

line as shown in Figure 16.  In order to prevent errors in dimensionality assessment due 

to numerical precision problems, eigenvalues less than 10-4 are discarded prior to forming 

the secant line.  Johnson showed this technique to be very effective at including enough 

PCs such that all anomalies are visible in the abundance maps for retained components 

(Johnson R. J., 2008).   

 
Figure 16: Dimensionality Assessment By Finding the Breakpoint Between Noise 

and Signal. Reprinted from (Johnson R. J., 2008). 

The retained principal components are then whitened, and ICA is performed on 

the resultant vectors using the FastICA algorithm.  Subsequently, the obtained unmixing 
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transformation is applied to the whitened PCs, resulting in k  independent components 

(ICs).  Potential anomalies are then nominated using a zero-detection histogram method 

described by (Chiang, Chang, & Ginsber, 2000).  The zero-detection algorithm first 

constructs histograms of scores for each IC.  The location, ϑ , of the first histogram bin 

with frequency of zero is then identified in each IC score histogram.  Pixels associated 

with scores greater than ϑ are considered anomalous as in (19).    A graphical example is 

offered in Figure 17.   

                       
Scorei >ϑLocation of First Empty Histogram Bin( )→ Xi ∈anomalies  (19)  

This method is, of course, very sensitive to the bin width, ω , chosen during histogram 

construction.  Wider bins will reduce the sensitivity of the detector and narrow bins will 

increase the sensitivity and result in more false positives (Johnson R. J., 2008).   

The AutoGAD algorithm then proceeds to identify ICs with high signal power by 

dividing the previously identified potential target variability by the variability of the 

background.  A measure of signal to noise ratio (SNR) is created with the aforementioned 

fraction. Large area classes such as road and different terrain types generally have low 

SNR compared to true anomalies.  An appropriate threshold is used such that ICs with 

low SNRs are then discarded in the final anomaly declaration (Johnson, Williams, & 

Bauer, 2013). 
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Figure 17: Zero-detection Method 

The ICs remaining are then filtered to reduce noise and false positives (Johnson 

R. J., 2008).  Iterative adaptive noise filtering (IAN) is used as it filters more heavily in 

areas where the variance is close to system noise while not greatly filtering areas with 

significant signal (Johnson R. J., 2008). An appropriate level of filtering iterations is 

selected based off of thresholds in SNR.  Higher SNR signals are filtered less while lower 

strength signals are filtered more to reduce background noise.  False positives due to 

noise are thus reduced, while true positives from signal are generally untouched.  

 Lastly, the zero-detection histogram method is implemented on the remaining 

filtered ICs resulting in the algorithms final anomaly declaration.   Results with this 

algorithm are promising, but require detailed calibration for scene and sensor types 

(Johnson R. J., 2008).  Figure 18 lists all the parameters and thresholds that need to be 

optimized for countless different environmental and sensor conditions. Further, because 

the algorithm uses FastICA  (Johnson R. J., 2008) (a process that starts with a random 
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seed), inconsistent results and processing times are possible when running the algorithm 

on a single image. 

 
Figure 18: AutoGAD Algorithm Parameters 

2.4.4 Support Vector Data Description  

Another different approach to HSI anomaly detection is the support vector data 

description (SVDD) anomaly detection algorithm for HSI which utilizes a kernel method 

for modeling the support of a distribution (Banerjee, Burlina, & Diehl, Banerjee SVDD, 

2006).  It also relies comparing an exemplar to neighborhood pixels and thus is similar to 

the RX algorithm. The non-parametric model used in SVDD does not rely on the 

multivariate normal assumption, as does RX. This proposes a potential advantage over 

RX and many other algorithms and has shown very competitive results (Banerjee, 

Burlina, & Diehl, Banerjee SVDD, 2006).  Results of the SVDD algorithm will thus be 

used for performance comparisons during chapter three of this research.  

2.5 Reconstruction Error Anomaly Detection Methods 

A reconstruction error may be obtained when the results of a dimensionality 

reduction are re-projected into the data’s original space.  A linear and non-linear PCA 

based reconstruction error anomaly detection method are outlined and discussed in this 

section.  Methods such as these can achieve compression and data analysis via 
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dimensionality reduction as well as perform anomaly detection.  Thus, highly efficient 

reconstruction methods might result in greater data storage and computational efficiency 

if implemented with HSI.  

2.5.1 PCA Subspace Method 

PCA may be used to “compress” random multivariate normal data Xn×p ∈ℜ
p .  The 

first k PCs of the data yield a prediction of X through X̂n×p = Xn×pVp×kV
T
p×k , and this 

prediction is essentially a re-projection of the data into the original feature space.  Using 

the residuals of this prediction as a statistic to detect multivariate outliers was introduced 

in 1957 by (Jackson & Morris, 1957).  Interestingly, PCA reduction and the residual 

technique mentioned were suggested due to high correlation within the ‘photographic 

processing’ data set studied by Jackson and Morris (Jackson & Morris, 1957),  and as 

mentioned previously, similar problems exist within HSI.  Later, Jackson and Mudholkar 

(Jackson & Mudholkar, 1979) further defined the value for testing goodness of fit and 

multivariate quality control with the statistic 
 Qi = (Xi(1×p) − X̂i(1×p) )(Xi(1×p) − X̂i(1×p) )

T  (20)  

where, under the assumption of multivariate normality, Q is a linear combination of i.i.d. 

chi-square random variables.   The resultant distribution, when k principal components are 

retained, is, 

 

 
(21)  

where λi are the eigenvalues of the sample covariance matrix, and Zi  are i.i.d. standard 

normal random variables.  In (Jackson & Mudholkar, 1979) an approximation to the 

Q ~ λiZ
2
i

i=k+1

p

∑
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normal distribution is presented based on a power transformation, but as presented by 

Ding and Kolacyk in (Ding & Kolacyk, 2010), the distribution of Q  can approximated as 

normal with the following mean and variance. 

 

 
(22)  

This approximation is justified by the central limit theorem, and robust to departures from 

normality as the number of discarded components increases.  Exemplars exceeding a 

given threshold of reconstructive error using probabilities from the normal distribution 

function will thus be considered anomalies or outliers in this method.     

2.5.2 Replicator Neural Network Anomaly Detection 

These methods utilize auto-associative neural networks of many forms to provide a 

reconstructive error anomaly score.  A multi-layer feed forward neural network is 

constructed and trained such that it has the same number of output and input neurons 

(Chandola, Banerjee, & Kumar, 2007).  The testing phase would evaluates each 

exemplar, xi , using the trained network to obtain a reconstruction,oi .   A reconstruction 

error, δ i , is then obtained for each data point by summing over p features for each data 

point as in (19).  The reconstruction error is then used as an anomaly score for each test 

instance.  A useful list of replicator neural network applications to anomaly detection 

may be found in (Chandola, Banerjee, & Kumar, 2007).  

 

 

(23)  

 

μ = λi      σ
2 =

i=k+1

p

∑ 2 λi
2

i=k+1

p

∑

δ i =
1

p
(xij − oij )

2

j=1

p

∑
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2.6 Response Surfaces and Robust Parameter Design 

Target detection in HSI demands the development of classification methods that 

operate consistently despite embedded random effects such as solar and viewing angle, 

scale, noise, background, and GSD issues. Assessing anomalies detected within a scene 

expends valuable man-hours, while failure to cue to anomalies might result in missed 

targets. Operating parameters and thresholds for HSI target detection algorithms, 

therefore, should be set properly to effect optimal and consistent results across varying 

images.   

Response surface methodology (RSM) offers a method to accomplish this by 

empirically modeling an algorithms output with a regression model (Myers, 

Montgomery, & Anderson-Cook, 2009).   A response surface model for algorithm 

optimization takes the form 

 y = f (ξ1,ξ2,...,ξk )+ ε,  (24)  

where the function f models an output of the algorithm, y, the predictor variables, ξ , are 

the algorithm parameters, and the error term ε  represents the sources of variability in the 

algorithm not accounted for in f (Myers, Montgomery, & Anderson-Cook, 2009).  The 

errors are assumed gaussian with a mean of zero.  Predictor variables are often converted 

from their actual values to coded variables, x, to facilitate experimental design and the 

response function is written   

 f (x1, x2,..., xk )+ ε,  (25)  

The response surface models considered in this research will be second order 

polynomials.  The models are thusly written 
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 y = β0 + x 'β1 + x 'β2x + ε,  (26)  

where is the intercept,  is a vector of parameter settings, is vector of control 

variable coefficients, is a matrix containing the quadratic control variable coefficients, 

and ε represents the error.  The range of the algorithm parameters before coding and 

experimental design must be limited such that the response can be accurately modeled by 

the second order function (Myers, Montgomery, & Anderson-Cook, 2009).  A factorial 

experiment is conducted to generate a sample of the output y for the selected design 

space.  Parameters in the response model may then be obtained by the method of least 

squares, and the final function is optimized within the design space to obtain the optimal 

settings.   

Robust parameter design offers a method to modeling an algorithms output and 

variability while also considering uncontrollable noise factors (Montgomery, 2009).  

RPD was developed by Genichi Taguchi as an experimental design approach to 

optimizing and reducing variability in product output from physical processes (Myers & 

Montgomery, 2002). The approach has been extended and adapted since and can be used 

in many areas.  RPD may be performed as long as there is at least one interaction 

between a control variable and an uncontrolled noise factor (Mindrup, 2011).  

Uncontrolled noise in HSI is inherent in each image due to various factors enumerated 

earlier, and control variables are the parameters set for different detection algorithms.   

The RPD and RSM considered in this research will utilize a form of the dual 

response surface optimization approach developed by Lin and Tu (Lin & Tu, 1995).  Lin 

and Tu provide a single number is best criterion for optimization after the construction of 

a response surface model (RSM) of a given system. Typically, RSMs for robust 

β0 x β1

β2
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parameter design utilize second order models and ignore higher order interactions due to 

the sparcity of effects (Mindrup, 2011).  The general matrix form for of the response 

model becomes:  

  (27)  

where β0 is the intercept, x  is a vector of parameter settings, β1 is vector of control 

variable coefficients, β2 is a matrix containing the quadratic control variable coefficients, 

z  is a vector of noise variables, γ is a vector of noise variable coefficients, and Δ is a 

matrix of noise by control variable coefficients.   The model is then split into mean 

response and variance models (Montgomery, 2009). 

 The Lin and Tu criterion minimizes deviation or mean squared error from a 

desired target response for a response surface model (Lin & Tu, 1995).  The Lin and Tu 

criterion may be written  

 
 

(28)  

Many modifications of the Lin and Tu method have been suggested including goal 

programming to further specify output characteristics, and target variance outputs 

(Mindrup, 2011). 

  

y x, z( ) = β0 + x 'β1 + x 'β2
x + z 'γ + x 'Δz + ε

MSET = (μ̂y −T )
2 − σ̂ y

2
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III. Methodology 

3.1 Chapter Overview 

This chapter begins with a description of the hyperspectral data used in this 

research.  In order to facilitate the development and exploration of algorithms presented 

in this chapter two contrasting images are highlighted.  The chapter then outlines an 

improvement to the AutoGAD algorithm and two new reconstruction error based 

hyperspectral anomaly detection techniques.  Finally, it will conclude with a presentation 

and subsequent optimization of an anomaly detector dubbed “multiple PCA,” applied to 

HSI.   

3.2  Hyperspectral Data 

Data used in this research is from the Forest I and Desert II Radiance collections 

of the Hyperspectral Digital Imagery Collection Experiment (HYDICE), as discussed in 

2.2.  Images contain 210 bands of radiance data with 10nm spectral resolution ranging 

from 400-2500nm in wavelength.  Unless otherwise noted, all images were captured with 

a pushbroom sensor.  Unless otherwise noted, they were collected at approximately 5000 

ft. above ground level (AGL).   Two of the sample images, one from the forest collection, 

ARES1F, and one from the desert collection, ARES1D will be used to demonstrate 

algorithm performance throughout the rest of the chapter.   

Visible color representations of ARES1D and ARES1F are shown in Figure 19 

along with their corresponding target masks.   Targets are shown in gray with fringe 

pixels (those containing a mix of both background and target spectral signature) shown in 

white.  The targets in ARES1F consist of vehicles and other smaller objects arranged 

linearly on the left with tarps and camouflage netting covering larger objects on the right.  
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ARES1D consists of only a single row of vehicles along a road traversing vertically 

through the image.   The images were chosen as a focus in algorithm development 

because of two contrasting elements besides the obvious environmental difference (Forest 

vs. Desert).  First, target pixels cover 3.3% of the image area in ARES1F as opposed to 

just over 0.41% in ARES1D.  The forest image also has some much larger anomalies.  

Additonally, this research noticed considerable levels of image noise and artifacts present 

in ARES1D throughout experimentation that seem to cause problems for many 

algorithms, whereas ARES1F exhibited little of the same. 

 
Figure 19: Contrasting Data Sets 
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3.3 AutoGAD Improvements 

The AutoGAD algorithm presented by Johnson (2008) had very positive anomaly 

detection results on many of the images used in this research; however, it underperformed 

on some images and there was not yet a straightforward way to generate ROC curves. 

The algorithm was designed to be fully autonomous, and so the algorithm parameters 

needed to be set to work effectively across a large range of images.  The results presented 

in (Johnson, Williams, & Bauer, 2013) are shown in Table 1, and illustrate the 

underperformance on TPF in some images, e.g. ARES4F, ARES1D, and ARES2F.  FPF 

seemed to remain consistently low, but the inconsistency in TPF was troubling.   

Unfortunately, it was also difficult to visualize the ROC of the algorithm and diagnose 

the problem. 

Table 1: Original AutoGAD Outputs 

 

Johnson (2008) showed that a key parameter in the AutoGAD algorithm was the 

bin width, ω , chosen when using the zero-detection histogram method.  Larger bin 

widths would result in a less sensitive detector with lower TPF and FPF rates, while 

smaller bins would result in increased sensitivity.  Generating a ROC curve was therefore 

theoretically possible by varying ω  over an appropriate range. Unfortunately, this was 

very processor intensive, as it required computationally demanding repetitive sorting over 
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all retained independent components.  Furthermore, the algorithm is fairly robust to the 

bin-width parameter, making the problem less tractable.  

Therefore, the first proposed improvement to the AutoGAD algorithm is a simple 

method to visualize its receiver operating characteristics. Generating a ROC curve 

necessitated moving the autonomously designated threshold for anomaly declaration for 

each independent component simultaneously. This could be accomplished by multiplying 

all independent component’s zero-bin detection thresholds, ϑ , by nominal factor,F , and 

re-computing anomaly declarations. This results in the slight modification to (19), 

Scorei > F ⋅ϑLocation of First Empty Histogram Bin( )→ Xi ∈anomalies  (29)  

Thus, varying F  over an appropriate range while repeatedly re-computing TPF 

and FPF resulted in a usable ROC curve.  The range for F was chosen nominally as [-

10,10].  One can see the effective range of the detection threshold in Figure 20 below of 

1.566 after this process would be [-15.66, 15.66] (IC scores can be negative).    

 
Figure 20: Zero-Bin Method. Reprinted From (Johnson, Williams, & Bauer, 2013) 
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 After studying ROC curves generated in the manner described above, it became 

apparent that the AutoGAD algorithm was probably not functioning optimally.  This can 

be noted in Figure 21 showing ROC curves for the all of the images with results 

displayed in Table 1, where the square markings along each curve indicate the original 

algorithm operating points (note that the axes do not range from [0,1]).   Clearly, and 

most dramatically in ARES4F and ARES2F, the algorithm had the potential to operate 

with much higher TPFs while maintaining comparable FPFs.   It was noted that the 

underperformance was, at least loosely, correlated with deviations from the average 

image size.  This is apparent in the results above where the two largest images ARES1D 

and ARES2F, as well as the smallest image ARES4F have the three lowest TPF scores.   

 
Figure 21: ROC Curves and Improved Operating Points 
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 Considering the apparent correlation with image size eventually led to 

determining that the bin-width parameter needed to be automatically adjusted image by 

image.  The original AutoGAD algorithm used a predetermined bin width, and when 

generating a histogram, created as many bins of this width as necessary to span from the 

minimum to maximum abundance for each independent component.  This meant that its 

detection sensitivity was sensitive to both the range of the independent components and 

the number of pixels in the image.  A way to alleviate this problem was to assign an 

average number of pixels per bin,Y , rather than a fixed bin width, and use this to 

determine the bin width dynamically for each independent component calculated, 

ω = Y
n
(min(score)−max(score)) . (30)  

An initial setting of Y = 300 pixels per bin was estimated from the original bin-

width suggested by Johnson and the average image size in his training set.  The results of 

this adjustment can be seen by viewing the new operating points shown in Figure 21, 

shown as dots along the ROC curves.   The results of this adjustment are also shown 

numerically, side by side, with the original algorithm results in  Table 2.  There is clearly 

a drastic improvement in TPF level and consistency.  FPF also increased somewhat 

dramatically.  To compensate for this, sensitivity can be adjusted by changing Y to affect 

a desired FPF limit.   The effect of adjusting Y from 300 to 700 pixels per bin can readily 

be seen in  Table 2, as FPF and TPF rates both decrease as Y increases.  
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 Table 2: AutoGAD Improvement Results 

 

3.4 Logistic PCA Reconstruction Error Anomaly Detection (LogPCARD) 

In this section, non-linear principal component analysis is performed via a DBN 

based replicator neural network to identify anomalies through reconstruction error.  The 

replicator neural network is stochastically pre-trained and constructed using RBMs with 

logistic units as described in 2.3.2.  This allows for gradient descent backpropagation to 

be efficiently performed on the resulting DBN such as to ‘fine tune’ the replicator neural 

network. Anomaly declaration is attempted before, and after backpropagation.  Recall 

section 2.5.2, where replicator neural network reconstruction error is used to detect 

anomalies; the same score for anomaly detection is employed to detect hyperspectral 

targets in this section.  Further, two other scores that work well are presented: the within 

pixel variance of reconstruction errors, as well as the “variance explained” for a given 

pixel. 

3.4.1 Data Preparation  

Using logistic sigmoidal units requires that the input data approximate 

“probabilities” when input to the first layer of visible units.   For hyperspectral imagery 

this can be accomplished via normalization, 

 XN
n×p = (Xn×p − 1n×1m

T )M −1 , (31)  

where  
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 m = (min(1),min(2),...,min( p) )
T ,  (32)  

is a vector of the band minimum values, 1 is a n ×1  matrix of ones, and  

 

M =

max(1)−min(1)
max(2)−min(2)

max( p)−min( p)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (33)  

is a matrix with the ranges of intensities by band on its diagonal.  The transformation 

forces all values of XN
n×p  to be bounded [0,1], and allows band intensities to be treated as 

probabilities and presented to the visible units in the binary RBM energy function.   In 

addition to this transformation, absorption bands are removed as described earlier in 2.2.  

3.4.2 DBN Formation and Training Parameters 

As in any neural network, the structure of the deep belief network is of key 

importance. There must be sufficient structure to represent the data, but also not 

superfluous units such as to dilute signal.  Furthermore, redundant logistic principal 

components lose value for interpretation.  An autoencoder structure found by trial and 

error to be useful is shown on the right of Figure 22, and will be used in the examples 

throughout this section.  Recall from section 2.3.2.4, that the autoencoder is constructed 

from the pre-trained RBMs on the left.  The architecture in Figure 22 seemed to balance 

representational power and speed, although anomaly detection through Log PCA 

reconstructions seemed to be very robust to network structure.  The number of hidden 

units in the first through fourth (and last) sequentially trained RBMs are as follows: 

A =125 , B = 75 , C = 35 , and the top layer of logistical principal components D = 3 .   
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Figure 22: HSI Log PCA Recon Anomaly Detector Structure 

The algorithm used to train the RBMs employs contrastive divergence and 

mirrors the code presented by (Hinton G. , 2007).  Parameters for training are listed in 

Table 3.  The parameters εw ,εa , and εb are the learning rates as described in (10) and  

(11), whereas wc , pinitial , and pfinal are the weight-cost, initial momentum, and final 

momentum, respectively. Weight-cost is a penalty for high connection weights generated 

during training and reduces the learning rate to avoid over-fitting and ‘sticking’ on or off 

of the binary units, while reducing possible errors introduced by under sampling of the 

Markov chain (Hinton G. E., 2010).  This is important because using contrastive 

divergence only accounts for, at most, the first few steps in the Markov chain.  The 

momentum terms are used to change the step size during training as the gradient becomes 
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smaller towards the end of training and progress slows.   The resultant update, ΔW , 

during each step, k , is  

 ΔWk = p ⋅ ΔWk−1 + εw ΔW −Wk−1 ⋅wc( )  (34)  

where ΔW is the matrix of weight updates calculated via (10). 

The center column in Table 3 holds training parameters for the first RBM A, 

while RBM B, C, and D’s parameters are shown in the right column.  A maximum of 30 

training epochs was chosen.  To enable a stopping rule, the total training error was 

monitored at each epoch.  A linear regression was performed on the last three epoch’s 

total reconstruction errors, and training was stopped when the slope became greater than 

or equal to zero.  Using reconstruction error is not the optimal method for monitoring 

training, (Hinton, 2010). but it is useful in that it is easy to compute and use for 

automation in the anomaly detection application.  In order to speed up training, updates 

are calculated in batches rather than individually (Hinton, 2010).  A batch size of between 

10-100 was computed depending on the size of the image being studied.  Larger images 

had larger batch sizes such as to increase efficiency and to avoid overtraining.   

Table 3: RBM Training Settings 

 

Parameter D A, B, & C 

εw .003 .2

εa .003 .2

εb .003 .2

wc 9e − 5 .003

pinitial .6 .65

pfinal .9 .85

maxEpoch 30 30

batchsize 10 −100 10 −100
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Recall from 2.3.2 that RBM A, B, C, and then D will be trained sequentially; 

using the outputs from the hidden layers in A as inputs to the visible layers in B and so 

on.  The resultant structure is then ‘stacked’ and ‘unfolded’ into an encoder and decoder 

for the logistic principal components as shown in Figure 22.   At this point, 

reconstructions of the original data points, x1×p ∈X
S
n×p  may be obtained by first encoding 

the logistic principal components, Tlog , as shown in Figure 23.  Here, B1−4  are matrices of 

the hidden biases, and z1−4 are vectors of the binary output probabilities at each layer.  

Layer 1 Layer 2

z1(1×k1 ) =
1

1+ exp − x1×p 1⎡
⎣⎢

⎤
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Layer 3 Layer 4
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Figure 23:Log PCA Encoding 

A prediction is then obtained by decoding the Log PCs as shown in Figure 24, 

where A1−4 are matrices of the visible biases, z5−7 are again vectors of the binary output 

probabilities, and X̂W
n×p  is a matrix of the reconstructed pixels, x̂ .   
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Layer 5 Layer 6
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Figure 24: Log PCA Decoding 

  Finally, thirty epochs of conjugate gradient backpropagation are performed on the 

full encoder-decoder structure to ‘fine-tune’ the weights.  Reconstructions can then be 

obtained in the same manner as before using the ‘fine-tuned’ autoencoder. Comparisons 

of the reconstruction errors for use in anomaly detection before and after backpropagation 

are presented in the following section.  

3.4.3 Log PCA Reconstruction Anomaly Detection on ARES1D and ARES1F 

Three scores derived from logistic principal component reconstructions are 

compared in this section.  All require the calculation of the reconstruction errors 

(“residuals”), R , for each pixel, 

 Ri(1×p) = Xi
N

− X̂i
N ∀i =1,2,...,n  (35)  

The first score is the essentially the same as the δ i  score outlined in section 2.3.4, and the 

QPCA score to be outlined in section 3.3.  In the case of Log PCA, the sum of squared 

reconstruction errors, QlogPCA  may be obtained by   
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Qi(logPCA) = Ri(1×p)R

T
i(1×p) = Xi

N
− X̂i

N( ) Xi
N

− X̂i
N( )T ∀i =1,2,...,n.  (36)  

The second score is the variance, σ Ri

2 , of the “residuals” across bands within a pixel and 

is calculated  

 
σ Ri

2 = 1
p

Ri − μRi( )2
i=1

p

∑ ∀i =1,2,...,n.  (37)  

where, μRi
,is the mean reconstruction error within a pixel (again calculated across 

bands). 

The final score, R2* , is akin to the r-squared term in a linear regression.  The 

score is the variance of the residuals, σ Ri

2 , divided by the “variance” across band 

radiances, r , within a pixel,  

 
σ 2

r( pixel ) =
1

p
ri − μr( pixel )( )2

i=1

p

∑  (38)  

A vector of the variance explained score, R , is then calculated 

 
Ri
2* =

σ Ri

2

σ ri

2 ∀i =1,2,...,n.  (39)  

It should be noted that the Ri
2* value differs from that of an r-squared term in a linear 

regression as the σ Ri

2  may exceed theσ ri

2 .  In this way it is not calculated as 1− Ri
2*  as this 

value is not logical, and for anomaly detection purposes it might actually be better to 

consider the score “variance not explained.” 

 Figure 25 and Figure 26 on the following pages show the utility of the above three 

scores for anomaly detection before and after ‘fine-tuning’ on ARES1D. The top row of 

plots in each figure show results for the Q  score, while the middle shows σ Ri

2 , and the 
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bottom row Ri
2* .  The scores have been normalized in the scatterplot on the left and a 

horizontal line at 3 standard deviations is drawn for reference.  It is interesting to note the 

decreased noise apparent in the abundance plot, and the improvements in ROC moving 

from Q  to σ Ri

2 , to Ri
2* in Figure 25 showing results before backpropagation.  The R2*

statistic plots show a drastic reduction in the effect of the sagebrush and noise on 

anomaly detection, but the abundance plot seems to show some shape distortions of the 

original anomalies. 
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Figure 25: Log PCA Recon. Anomaly Detection ARES1D, Before ‘fine-tuning’ 

 Interestingly, backpropagation seemed to negatively affect anomaly detection 

with the R2* statistic in Figure 26, while performance improved for σ R
2  and Q .  A 

possible explanation may lie in the R2* abundance plot.  Here, the intensity of the top five 

vehicles seems to have increased, while the bottom vehicle disappeared almost 

completely.  It seems probable that over-training caused this problem, although the 

bottom vehicle appears to have increased in intensity in the σ R
2  and Q  abundance plots.  
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Figure 26: Log PCA Recon. Anomaly Detection ARES1D, After ‘fine-tuning’ 

 Figure 27 shows similar results after before backpropagation for ARES1F.  Once 

again, ROCs improve dramatically in order from Q  to σ R
2  to R2*  as background clutter 

abundance is reduced in relation to the noise.  Interestingly, in the R2* abundance plot, the 

row of trees in the bottom left corner dominate all the anomalies as pixels so much so that 

the rest of the anomalies are not visible.  The ROC are robust to this, but it seems that 

finding a consistent operating point may prove difficult with this score.    
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Figure 27: Log PCA Recon. Anomaly Detection ARES1F, Before ‘fine-tuning’ 

 Finally, in Figure 28 there is a drastic improvement in ROC after backpropagation 

for all statistics. The abundance plots all look cleaner and it seems that the autoencoder 

has ‘learned’ the background pixels very well in comparison to the anomalous pixels.  

The problem with the trees in the bottom left corner for R2* is not really fixed, but each 

score’s potential for use in anomaly detection were improved. 
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Figure 28: Log PCA Recon. Anomaly Detection ARES1F, After ‘fine-tuning’ 

3.4.4 Zero-detection Histogram Thresholds  

As was done with the AutoGAD improvements in section 3.3, an image size 

adaptive bin size parameter, Y , is selected and anomaly detection is performed using the 

zero-detection histogram method (19) outlined in section 2.4.3,  

                       
Scorei >ϑLocation of First Empty Histogram Bin( )→ Xi ∈anomalies . (40)  
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The effects of different Y on the anomaly detection for the σ R
2 score (before 

backpropagation) are shown in Figure 29.   It is quite obvious that bin size, ω , will 

drastically affect the TPF and FPF rates.   

   

  
Figure 29: Varying Bin Size for ARES1D 
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 Anomaly declarations using the zero-bin detection method for all three proposed 

scores using bin size parameter Y =10 are presented in Figure 30 through  Figure 33.   

The results for ARES1F Forest 1 show the inability of the zero-bin detection method to 

separate the anomalies in a situation such as in the R2* score where there were a number 

of far outlying values (the trees in the bottom left corner) as displayed in Figure 27 and 

Figure 28.  This effectively ‘squeezed’ a majority of the pixels, to include the actual 

anomalies into the far left of the histogram and forced the detection threshold too far 

right.  Otherwise, results for ARES1F seem modest but it appears that an appropriately 

selected Y could yield promising results.  The results for ARES1D in Figure 32 and  

Figure 33 shows a more consistency across the different detection scores, although it 

seems that different values are needed for different scores.  It is apparent in both 

images that backpropagation reduced FPF rates as the autoencoder better ‘learned’ the 

background structure of the data.     

   
Figure 30: ARES1F LogPCARD Results Before Backpropagation 

 

Y
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Figure 31:ARES1F LogPCARD Results After Backpropagation 

   
Figure 32: ARES1D LogPCARD Results Before Backpropagation 
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 Figure 33: ARES1D LogPCARD Results After Backpropagation 

3.4.5 Summary 

This section presented a method for constructing and training a DBN autoencoder 

that successfully generated reconstructions used for HSI anomaly detection.   Three 

different anomaly scores generated from reconstruction errors show potential for anomaly 

declaration with the R2* score showing generally the best ROC, but inconsistency in 

automation due to its high variability.  For this reason, the σ R
2 score will be considered 

when comparing the algorithm performance with the other techniques in Chapter 4.   

3.5 Global Iterative PCA Reconstruction Error Based HSI Anomaly Detection 

The global iterative PCA reconstruction error based anomaly detection 

(GIPREBAD) method introduced in this section utilizes the squared reconstruction error 

statistic, Q , outlined in 2.5.1 in an iterative fashion.  The iterative feature reduces 

extreme anomaly effects on first and second order statistic estimation, thus resulting in a 

more accurate estimation of the background covariance structure.  This is a similar 
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concept to that employed by Taitano, Geier, and Bauer (2010) for constructing the locally 

adaptable iterative RX detector.   Subsequent iterations of GIPREBAD increase the total 

reconstruction error for anomalies and thus separate targets from the background for 

detection.    

The results of iteratively removing suspected anomalies from the covariance 

estimation are readily apparent in Figure 34 showing the 1st, 2nd, 4th, and 10th iteration of 

GIPREBAD on ARES1F.  Referencing the truth mask in Figure 19, notice the 

increasingly defined appearance of known anomalies on the abundance plot after each 

iteration.  Further, the ROC curves on the right show the ability of the algorithm to affect 

accurate classification of anomalies.   
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Figure 34: GIPREBAD Iterations 1, 2, 4, & 10, ARES1F 

GIPREBAD starts by standardizing and centering the reshaped hyperspectral data, 

Xn×p prior to determining the principal component directions and the magnitude of their 

associated eigenvalues.   The transformation ensures equal weighting between spectral 

bands that might otherwise maintain unequal scaling and is equivalent to using the 
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sample correlation matrix in place of the covariance matrix in the PCA formulation.  This 

affine transformation is performed as  

 XS
n×p = (Xn×p − 11×pμ

T )D
−1
2  (41)  

where  

 μ = (μ(1),μ(2),...,μ( p) )
T  (42)  

is a vector of the band means, u is a n×1matrix of ones, and  
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⎥

 (43)  

is a diagonalized matrix of the band variances.  The result is the matrix XS
n×p , of 

hyperspectral pixels, standardized and centered by band.  A dimensionality, k , 

assessment is then made according to Kaiser’s criterion as PCA is performed. The 

resultant k  principal components, T , are then computed where 

 Tn×k = X
S
n×pVp×k.  (44)  

 The principal components are then used to project PCs back into the original data 

structure as a reconstruction, XS
n×p , where  

 X̂ S
n×p = Tn×kV

T
p×k  (45)  

This reconstruction is then subtracted from the original data vector to form a vector of 

residuals.  These residuals are squared and summed, forming the approximately normally 

distributed score Q  as in (17)   

Qi = (X
S

i(1×p) − X̂
S
i(1×p) )(X

S
i(1×p) − X̂

S
i(1×p) )

T∀i =1,2,...,n . (46)  
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Consider the mean of this statistic to be μQ  and the standard deviationσQ .  Exemplars 

where Q >Qthresh , where Qthresh = μQ + 2.801⋅σQ  are added to the set O , of potential 

outliers. The value chosen for Qthresh is essentially a nominal declaration threshold loosely 

justified by its location at the .995 normal quantile (assuming that the outliers represent a 

small percentage of the data).  

 A new subset of the standardized data, X̂ S
n×p , is now formed that does not include 

the potential outliers declared in O . This new data set will be used to estimate the 

background covariance structure and again form principal components; beginning a new 

iteration where potential anomalies are once again excluded.  The algorithm reassesses 

dimensionality and generates a new Qthresh during each iteration.  Iterations are continued 

until no new anomalies are declared or a pre-defined maximum limit of iterations is 

reached. Pseudo code outlining the iterative procedure is shown in Figure 35. 
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Figure 35:Pseudocode for GIPREBAD  

 After the final anomaly scores, Q , for all pixels within the image are calculated.  

The zero-detection histogram method outlined in section 2.4.3 is then used to pick an 

appropriate threshold for anomaly declarations.  Zero-detection is not used during 

individual iterations as it slows the algorithm due to the high computational demands of 

repeated sorting, while also not yielding significant gains in accuracy.   Final ROC curves 

for the GIPREBAD algorithm on ARES1D and ARES1F are shown in Figure 36 and 

Figure 37. 
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Figure 36: GIPREBAD Relative Performance, ARES1F  

 
Figure 37: GIPREBAD Relative Performance, ARES1D 
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  GIPREBAD performed favorably on ARES1F providing excellent ROC when 

compared to the benchmark standard RX algorithm, SVDD, and Log PCA Recon only to 

be outperformed by AutoGAD as shown in Figure 36.  On the other hand, nearly all other 

algorithms presented for comparison outperform GIPREBAD on ARES1D (although it is 

still quite competitive).  Figure 38 showing the 1st, 2nd, 3rd, and 10th GIPREBAD 

iterations for ARES1D offer some insight into this outcome.  Note in the first iteration 

Qscore  plot how an abundance of background pixels are more poorly reconstructed than 

the known anomalies. One possible explanation for this is that the targets may have been 

reconstructed well compared to pixels in the background due to a large amount of 

anomalous spectral information being included in the retained principal components (too 

many components retained).  Alternatively, the background pixels that are being poorly 

reconstructed may not be represented well in the components retained (too few 

components retained).  
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Figure 38: GIPREBAD, 1, 2, 4, & 10 Iterations, ARES1D 

 In order to adjust for a potential systemic over or under estimation of 

dimensionality causing performance problems, a correction factor, ck , is created.  After 

obtaining dimensionality assessment through Kaiser’s criterion, the result is adjusted as 

k = k + ck .  ROC curves for nine different levels of ck  tested in the global iterative PCA 
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reconstruction method for ARES1D and ARES1F are shown in Figure 39.  There is little 

evidence that a correction to the dimensionality assessment will enable better anomaly 

declaration for images similar to ARES1D; therefore, perhaps noise is the primary cause 

of underperformance.  

 

 
Figure 39: ROC Curves Varying Dimensionality Adjustments 
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The GIPREBAD algorithm can potentially amplify the effects of noise by 

removing noisy pixels that also contain background information.  In the case of 

ARES1D, for instance, noisy pixels containing spectral information for the sagebrush 

present in the scene might be removed from the covariance estimation.  The sagebrush is 

already sparsely present in the scene and its spectral signal diluted by shadows caused by 

the solar angle. These two factors might be causing the anomaly detector to become a 

“sagebrush detector” in this instance.  One possible technique to avoid this problem 

would be to use the same adaptive filtering as in AutoGAD on the Q  score such as to 

reduce the noise amplified by the iterative technique.  Results on ARES1D and ARES1F 

after 20 IAN filtering iterations on the final Q  scores yielded promising results as shown 

in Figure 40. 

 
Figure 40: GIPREBAD with Q IAN Filtering 

 Interestingly, despite the impressive ROC curve generated by the adding of 20 

iterations of IAN filtering, this is not necessarily a very desirable procedure.  Filtering 

removes noise from the image, but adaptive filtering can also remove valid signal in the 
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form of very small anomalies from the image after too many iterations.  As an example, 

reference Figure 41.  Here, it is apparent that the vehicles on the upper left of ARES1D in 

the filtered scene all but disappear.  Furthermore, although there is far less noise in 

ARES1D when it is filtered, the tanks along the road lose some of their sharp geometric 

features, which would possibly make it harder for an analyst to declare/confirm that they 

are anomalies.  In this way, care must be taken when judging an algorithm on TPF, FPF, 

and LA performance alone.  

   
Figure 41: IAN Filtering & Final Abundance Maps 
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 An exhaustive enumeration approach was taken to choose a group of settings for 

the GIPREBAD algorithm.  A total of five parameters were considered, l  PC filtering 

iterations, the detection sensitivity Y , the dimensionality adjustment ck , the threshold for 

iterative PCA Qthresh , and the maximum number of iterations.  Every possible 

combination of values for the parameters and step sizes shown in Table 4 were visited for 

each image in the training set shown in Table 6 on page 94. The settings with the highest 

average area under the ROC curve were selected as the algorithm operating parameters.  

A test set is also included in Table 7, but the results will not be considered until Chapter 

IV.     

Table 4: GIPREBAD Exhaustive Enumeration Limits  

Parameter Description Bounds Step Size 

l  IAN filtering iterations [0,12] 1 
Y  Detection sensitivity [0.5,3] .25 

ck  Dimensionality adjustment [-1,1] 1 

Qthresh  Iterative threshold [1,4] .2 

maxiterations  Maximum iterations [0,12] 1 
 

 The optimal combination of settings found is shown in  
 
 

Table 5.  Interestingly, the algorithm seemed to perform best with very few iterations and 

a very low Qthresh .  This seems to indicate that it is more effective to remove a large 

number of pixels from the data used for covariance estimation only a small number of 

times.   
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Table 5: GIPREBAD Exhaustive Enumeration Results 

Parameter Value 

l  7 

Y  .75 

ck  1 

Qthresh  1.4 

maxiterations  2 

 
 Figure 42 shows the ROC curves for GIPREBAD when operating with the 

parameters determined through exhaustive enumeration.  The dots printed along the 

curves indicate the actual operating point selected by the zero-detection histogram 

method.  It seems as though a fairly robust set of parameters was selected as the result 

translates well to the test set.   A more exhaustive examination of these results, as well as 

a performance comparison to other algorithms presented will be shown in Chapter IV. 

 
Figure 42: GIPREBAD Training and Test ROC Curves 
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 In summary, the GIPREBAD algorithm is a fully autonomous global method for 

declaring anomalies within HSI.  It repetitively ‘prunes’ the HSI data matrix used to 

estimate first and second order statistics used for PC construction.  This enables a more 

accurate estimation of the background covariance structure and more accurate anomaly 

declarations using PCA reconstruction error.  Even prior to optimization, with the two 

test images the algorithm performs competitively with the other standard HSI anomaly 

detectors discussed in Chapter 2.  This section served to prove the effectiveness of PCA 

reconstruction error in anomaly detection, and illustrated the positive effect of obtaining 

‘cleaner’ background covariance estimation prior to anomaly detection.   

3.6 Multiple PCA 

This section presents a fully autonomous global anomaly detector dubbed 

“Multiple PCA.”  It consists of a voting ensemble that combines results of the zero-

detection histogram method (19) on four PCA based anomaly detection scores, D1−4 , 

described later in this section.   The voting scheme, shown in Figure 43, makes the 

detector more robust against the noise inherent in HSI, as well as to shortcomings of each 

individual score.  Although the ensemble consists wholly of members using PCA based 

scores, they are diverse in their responses to different images and targets, which increases 

the ensemble’s effectiveness.  Further, a highly sensitive initial anomaly detection is 

performed, and potential anomalous pixels are excluded during covariance estimation for 

the final anomaly declarations.  As in GIPREBAD and Iterative RX, this serves to reduce 

anomaly effects on first and second order statistic estimations. The result is an algorithm 

that is highly robust to different images, conditions, and anomalies.  Tangible 

improvements over AutoGAD and other standard detection algorithms are realized. 
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Figure 43: The Multiple PCA Algorithm 

3.6.1 Algorithm Development 

 Pseudocode for Multiple PCA is provided in Figure 44 and will serve to frame 

the presentation of the algorithm.  References to the pseudocode will be displayed as 

{line #}. The remainder of this section will cover data handling and the broad functioning 

of the algorithm {lines 2-5, 12-17, 21-24}.  The next three sections will detail the 

formation of the D1−4  statistics using the images ARES1D and ARES1F.  Finally, a 

response surface model and experimental design akin to RPD will be conducted to 

optimize the algorithm parameters.  
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Figure 44: Pseudocode for Multiple PCA 

As in GIPREBAD, before PCA is performed, the absorption bands are removed 

and the data, Xn×p , is centered and standardized to obtain XS
n×p  {line 3}. The 
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dimensionality, k , of the data is then assessed via the maximum Euclidean distance from 

the log-scale secant line (MDSL) technique {line 5} (Johnson R. J., 2008).  An 

adjustment factor, ck , as presented in section 3.5 may be used to adjust for chronic over 

or underestimation of dimensionality to effect better algorithm performance, k = k + ck,

before continuing.  After PCA is performed on, XS
n×p , the D3 score is calculated using k

principal components {line 8}.  Subsequently, lpc iterations of adaptive noise filtering 

(IAN) are performed on the trailing principal components ( k→ p ) {line 9}.  As in 

AutoGAD, adaptive filtering is chosen as it filters more heavily in areas where the 

variance is close to system noise, while not heavily filtering areas with significant signal 

(Johnson R. J., 2008). 

After filtering, the D1 , D2 , and D3  scores are computed {line 11}, and additional 

IAN filtering with lD iterations is performed on D2−4 {line 12}.  Four separate histograms 

corresponding to each D score are then constructed with a highly sensitive bin size 

parameter Yinitial .  The zero-detection histogram method is then used to declare potential 

anomalies {line 14}.  PCA is again performed, but using covariance estimates not 

including the potential anomalies {line 14}.  The D3  statistic is then recalculated {line 

15}, again followed by lpc iterations of adaptive filtering on the trailing principal 

components {line 16}.  The final D2 , D3 , and D4 scores are then calculated {line 17}, 

followed once again by IAN filtering with lD iterations on D2−4 {line 21}.  Finally, 

another round of zero-detection for D1−4 , after histogram construction with a less 

sensitive bin-size parameter Yfinal {line 23}, determines voting for each individual 
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component.   For final anomaly declaration, at least 2 votes are required to declare a pixel 

anomalous {line 24}.  

3.6.2 D1 and D2 

TheD1 and D2  statistics (Jolliffe, 2002) both require whitening of the principal 

components,  

 Zn×p = Tn×p( )Λ−12  (47)  

Values in Z are then squared by element, Z * = Z Z , and the two scores are simply linear 

combinations of the result. D1 is the sum the first k whitened squared components, 

 
D1 = Z *

1

k

∑  (48)  

while D2  is the sum of the remaining components, 

 
D2 = Z *

k+1

p

∑  (49)  

The D1 score or any detector that relies solely on the first k PCs serves to identify 

anomalies that would generally be observable by looking at plots of the original data or 

plots of the individual PCs.  These anomalies inflate variances and covariances as they 

caused large increases in one or more of the variances in the original variables (Jolliffe, 

2002).  Theoretically, AutoGAD and other algorithms that focus solely on the first k  

principal components will be very good at picking out anomalies of this type.   

As an example, recall how easily the vehicles along the road in ARES1D were 

visible from looking at plots of the first few principal components in Figure 6.  Figure 45 

shows the D1  score for ARES1D, note there was only a handful of false negatives for the 

vehicles and no fringe pixels were declared anomalous.  In the results for D1 for ARES1F 
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in Figure 45 there are similar results and one can note the outline of the tent features 

being false negatives.  This might be due to spectral mixing causing these pixels, 

although truly anomalous, to have little effect on the overall covariance structure.  

 
Figure 45: ARES1D & ARES1F D1 Score 
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 In contrast, the D2 score may be able to detect outliers that are not apparent when 

looking at plots of the individual PCs or original bands.   These band structures do not 

adhere to the overall covariance structure, but are not extreme enough in any one variable 

to affect the overall covariance estimates (Jolliffe, 2002).   Although the effect is not very 

dramatic for the two test images, one can see the failure of D2 to capture some of the 

more ‘obvious’ anomalies, while seeming to capture some of the fringe pixels around the 

vehicles in ARES1D.   
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Figure 46: ARES1D & ARES1F D2 Score 

3.6.3 D4 

The D4 statistic is the value of the median component ofZ * by pixel,  

 D4 =median Zi
*( )∀i =1,2,...,n  (50)  

The author introduced this novel score because of the large amount of noise usually 

present in the latter principal components.  It was thought that the median would be less 

volatile to noise in a pixel than the sum of squares.  It is interesting to note that the linear 
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combination of across all whitened squared principal components is equivalent to the 

Mahalanobis distance (Jolliffe, 2002). 

 rMD (Xi ) = (Xi − X)
T S−1(Xi − X) . (51)  

This is readily seen when considering  

 S =VΛVT ,   Tn×p = Xn×pVp×p,  &  X = Tn×pVp×p
T . (52)  

A simple proof is provided:  

 (X − X)T S−1(X − X) = (Ti − μT )V
TVΛ−2VTV (Ti − μT )

= (Ti − μT )
TΛ−2 (Ti − μT )

=
T 2
ij

λ jj=1

p

∑ ∀i =1,2,..., p

 
(53)  

In this way, the D4  score is a robust estimator to this measure.  The score seems to 

capture anomalies that fall into both D1  and D2 and thus serves as a good member of the 

ensemble, especially with a two vote requirement.    

 Results for the two test images are shown in Figure 47, where one can note the 

slight decrease in noise levels in this score.  In ARES1F, the high variability and average 

scores of the anomalies in relation to the rest of the image is very apparent.  It provides a 

cleaner and seemingly more accurate anomaly detection than is shown in the previous 

three scores for both images.  Noisy late trailing components, and background structure 

bearing early components are at least partially ignored by this score leading to its high 

performance as an anomaly detector in HSI.   
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Figure 47: ARES1D and ARES1F D4 Statistic 

3.6.4 D3 

The D3 score is the same as the, Q , or squared reconstruction error score used in 

the GIPREBAD and Log PCA reconstruction algorithms.   

 D3 =Qi = (X
S

i(1×p) − X̂
S
i(1×p) )(X

S
i(1×p) − X̂

S
i(1×p) )

T∀i =1,2,...,n  (54)  

It should be noted that this is a similar score to that of D2 except that it does not give 

equal weighting to all of the principal component directions through whitening.  
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Recalling section 2.5.1, consider that the reconstruction error is equal to the linear 

combination of the trailing principal components  

 Ti(1×p−k )V
T
p×p−k = (X

S
i(1×p) − X̂

S
i(1×p) )∀i =1,2,...,n.  (55)  

In this way it complements the other statistics in the ensemble well by providing what 

might be considered weighted information from the trailing PCs.  Earlier principal 

components contain more variance and are usually of greater magnitude, this aspect 

theoretically minimizes the noise that is prevalent in the later PCs.   

Figure 48 shows results for the algorithm on the two algorithm development 

images.  Noise is clearly a problem in ARES1D , while the statistic does extremely well 

in ARES1F.   The problems in ARES1D are most likely due to relatively early PC bands 

being dominated by noise and sensor artifacts.  The linear artifacts present in the Figure 6 

appear in this score’s abundance plots.  It should also be noted that the noise present in 

the D3  score is markedly different than that shown by the other scores.  This, once again, 

is an indicator of its utility as a part of the multiple PCA ensemble.   
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Figure 48:ARES1D and ARES1F D3 Statistic 

3.6.5 Summary of Technique 

An appropriately constructed fusion of detectors leverages the strengths of 

individual members, while also masking some of their weaknesses.  The Multiple PCA’s 

voting ensemble does just this by combining four diverse scores in a voting ensemble.  

Using PCA as a basis for the four scores enables efficiency, as each score is simply 

different linear combinations of the original PCs.  The exclusion of potential outliers in 
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the background covariance estimation used for final anomaly detection makes the 

algorithm more robust against extremely anomalous pixel spectra and noise.  Results for 

the algorithm on ARES1D and ARES1F are shown in Figure 49.  Here we see a two very 

clean sets of anomaly declarations, especially compared to the individual score 

declarations above.    

 
Figure 49: ARES1D & ARES1F Finaly Anomaly Declarations 

3.6.6 Parameter Optimization 

3.6.6.1 Purpose  

Initial algorithm testing was largely accomplished by trial and error, and an 

original solution for algorithm parameter settings was determined through what might be 

considered subjectively directed exploration.   Perhaps not unsurprisingly, this resulted in 
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a poor translation of performance from training to test images and revealed the need for a 

systematic method of finding optimal algorithm parameters.  The ROC curves in Figure 

50 illustrate this well.  Here, the solid lines indicate the detection capability after the 

removal of potential anomalies, while the dashed lines indicate detection results when 

using the entire image to estimate covariance for PCA.  

 
Figure 50: Multiple PCA Initial Results 
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Two things can be gathered from Figure 50, one is the increase in performance 

after removal of potential anomalies.  The other is the poor performance of the algorithm 

with the original settings on the test set.  Clearly, the receiver operating characteristics for 

the test images vary dramatically and indicate far less detection capability than that of the 

training set. The cause of this is twofold.  First, the training and test sets were not chosen 

carefully for the images.  Second, the settings developed during initial experimentation 

were not chosen systematically.  For this reason, the difference in performance is also 

likely the result of ‘lucky overtraining,’ or happening upon a solution that worked very 

well for the training set but not for the test images.  To address the aforementioned 

problems a training and test set was purposefully chosen, and a response surface method 

akin to RPD was used to optimize the Multiple PCA algorithm.  These two steps 

prevented overtraining while ensuring accurate anomaly detection across a diverse set of 

images.   

3.6.6.2 Training and Test Set Construction 

A new training set was constructed focusing on diversity of training examples and 

is shown in Table 6.  The set of images contains three desert and four forest scenes, 

divided evenly to encourage a consistent response between scene types.  Three images 

ARES2F, ARES4F, and ARES1D contain extremely small concentrations of target 

pixels; the rest of the images span a range up to the maximum concentration of target 

pixels available in the HYDICE data available.  The Fisher ratio (Duda, Hart, & Stork, 

2001), Fratio , calculated 
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Fratio =

μai − μbi( )2
σ 2

ai +σ
2
bi

⎛

⎝
⎜

⎞

⎠
⎟

i=1

p

∑
p

,  
(56)  

 

where μai and μbi are the anomaly and background band means, σ 2
ai  and σ 2

bi are the 

anomaly and background band variances, was also considered.  The Fisher ratio measures 

the discriminating power of a variable, and therefore provides an estimation of the ease 

with which an anomaly detector can discern the anomalies from the background. 

Furthermore, as sample size can affect both the zero-detection histogram method and the 

effects of outliers on covariance estimation, a substantial range of image sizes was also 

selected.    

Table 6: Training Images 

 

The test set was chosen with a similar mentality.  First, the seven images are 

divided evenly between forest and desert scenes.  Second, there is a large range of target 

pixel concentrations and the Fisher ratio varies similarly to the training set.  Finally, a 

few very small images are included, as well as the largest image available to test the 

detection algorithm’s abilities to handle varying image sizes.  The test set is shown in 

Table 7.  A validation set with two images that contain no anomalies will be used to 

confirm algorithm accuracy as well and is displayed in Table 8.  
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Table 7: Test Images 

 

Table 8: Validation Images 

 

3.6.6.3 Optimization Function and Training Method 

Measuring the utility of an anomaly detector requires a single performance metric 

that promotes both a high anomaly detection rate as well as a low false alarm rate.  It is, 

of course, easy to achieve a high detection rate when false positives aren’t very 

problematic.  In the case of hyperspectral anomaly detection, it is important to keep the 

false alarm rate low so that an analyst or computer does not become overwhelmed with 

targets.  In many anomaly detection situations this is also the case, and so any method to 

optimize anomaly detection algorithms must consider limiting its sensitivity and 

promoting accuracy. 

The performance metric, P , chosen for algorithm optimization in this research 

was essentially a utility function with weightings selected to achieve a low consistent 

false alarm rate.  The function took the form 
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 P = μTPF −1( )2 + 3μ2
FPF + 3σ FPF

2 . (57)  

μTPF , μFPF , and σ 2
FPF are defined as 

 

μTPF =
TPFi

i=1

N

∑
N

, 
(58)  

 

μFPF =
FPFi

i=1

N

∑
N

, 
(59)  

and 

 

σ 2
FPF =

FPFi − μFPF( )2
i=1

N

∑
N −1

 (60)  

where TPFi  and FPFi  are the true positive fraction and false positive fraction for 

detection results on an individual image within the training set of size, N.   In this way, 

μTPF and μFPF , are the mean TPF and FPF and σ 2
FPF is the variance of the FPF across the 

set of training images.  The performance, P is then calculated for each row in the design 

matrix.  Both of the algorithms were optimized using a three level full factorial design, 35 

with a corresponding 243 “batches” of seven test images. 

The P  utility score is similar to that of the Lin and Tu (Lin & Tu, 1995) model 

presented in (28), as it includes the variance of the output in the response and generates a 

single score for optimization.  The FPF was weighted more heavily in order to make the 

results more usable in HSI analysis.  Experience with the HYDICE data showed general 

inconsistency from image to image on TPF rate for varying algorithms.  In this way, not 

including the variance of the TPF in the utility function prevents the optimization 
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function from “desiring” consistent results, which might not be possible or would force 

the optimization settings to decrease the TPF rate on ‘easier’ images.    

 A second order response surface model was chosen, as it has been found to be 

useful in a variety of situations so long as the range of the control variables is appropriate 

(Myers, Montgomery, & Anderson-Cook, 2009).  The model takes the form,  

 P = β0 + x
Tβ1 + x

Tβ2x + ε,  (61)  

where is the intercept,  is a vector of parameter settings, is vector of control 

variable coefficients, is a matrix containing the quadratic control variable coefficients, 

and ε represents the error.  The error term is quite complex as it accounts for variance 

added by many factors that will likely not be explained by the model, including the varied 

responses of the algorithm to each of the individual images in the training set.   

 The next two sections outline design of two experiments using the response 

surface model described to optimize the algorithm.  These designs are both ultimately the 

result of sequential experimentation to find an appropriate set of control variables and 

their corresponding testing limits to both enable reasonable regression statistics and 

optimal statistics.  The first optimization groups sets a uniform detection sensitivity, Yfinal

, for all the D scores and focuses on mainly on other algorithm parameters. The second 

optimization considers selecting optimal parameters of Yfinal for each individual anomaly 

detection score.  

3.6.6.4 Optimization I 

The first optimization presented on the Multiple PCA algorithm was designed to 

find optimal values for the number of score filtering iterations lD , the optimal number of 

β0 x β1

β2
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PC filtering iterations lpc , the optimal dimensionality adjustment ck , and the optimal 

initial and final detection sensitivities Yinitial  and Yfinal .   The corresponding ranges of 

these control variables are shown in Table 9.   

Table 9: Optimization I Parameter Ranges 

Control Variable Description Lower Limit Upper Limit 

 IAN filtering iterations 4 12 
 Final detection sensitivity 1.75 3.75 

 Dimensionality adjustment -4 -2 

 IAN filtering iterations   

 Initial detection sensitivity 0.01 0.15 

 

  A response surface model was estimated after experimentation with a 35 full 

factorial design.  The 243 different values for the performance metric, P , were fit to a 

second order polynomial model (61).  The regression resulted in an r-squared value of 

.7351 (r-squared adjusted .7112), indicating that the model explained over 73% of the 

variance in the output performance metric as the control variables were adjusted.   Only a 

small departure from normality in the residuals is indicated as shown by the normal 

probability plot and the residual vs. predicted plot in Figure 51.   A slight departure from 

normality is to be expected, especially towards the lower end of the prediction range.  

This is because the performance metric chosen is bounded and cannot be negative. 

lD D2−4

Yfinal

ck

lpc PC .25ld .75ld

Yinitial
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Figure 51: Optimization I Residual Analysis 

A generalized reduced gradient algorithm was then implemented using the 

complete fitted model in order to minimize the output.  The resultant solution revealed 

the control variables shown in Table 10.  The solution was then applied to the training 

and test sets. 

Table 10: Optimization I Parameter Results 

Control Variable Value 

 8 
 2.775 

 -4 

  

 0.142 

 

 Note the drastic difference between the results of the response surface model 

presented in Figure 52 and that of the originally selected parameters shown in Figure 50.  

There is clearly more consistency in the shape of the ROC curves as well as in the 

position of the operating points.  The test set displays similar performance indicating that 

lD
Yfinal

ck

lpc .25ld

Yinitial
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the parameters chosen are robust and can be applied successfully outside of the training 

set.  A more detailed numerical analysis of these results will be offered in Chapter IV. 

 
Figure 52: ROC Optimization I Results 

3.6.6.5 Optimization II 

The second optimization focused on selecting individual detection sensitivities

Yfinal  D1−4
for each score, and a corresponding, Yinitial , overall initial detection sensitivity. It 

was thought that due to the varying strengths between members of the ensemble, it would 

prudent to set individual zero-detection sensitivities for each of the four scores.   The 

settings obtained from the previous response surfaces results were used for the other 

settings in the algorithm.  The control variables optimized and their associated limits are 

shown in Table 11. 
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Table 11: Optimization II Parameter Ranges 

Control Variable Description Lower Limit Upper Limit 

 D1 Detection Sensitivity 1.5 3.5 
 D2 Detection Sensitivity 1.5 3.5 

 D3 Detection Sensitivity 1.5 3.5 

 D4 Detection Sensitivity 1.5 3.5 

 Initial detection sensitivity 0.05 0.25 

 

 As before, a response surface model was constructed through experimentation 

with a 35 full factorial design.  The 243 different values for the performance metric, P , 

were fit to a second order polynomial model (61).  The regression resulted in an r-squared 

value of .8575 (r-squared adjusted .845), indicating that the model explained almost 86% 

of the variance in performance metric across settings.   Furthermore, referencing the 

normal probability plot and the residual vs. predicted plot in Figure 53, one sees a slight 

problem with homoscedasticity and a moderate departure from normality.  This can be 

considered a positive result, for as mentioned earlier, all of the statistics used to construct 

our performance metric are bounded.   

 
Figure 53: Optimization II Residual Analysis 

Yfinal  D1

Yfinal  D2

Yfinal  D3

Yfinal  D4

Yinitial
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  Using the entire fitted model with all interaction terms, a generalized reduced 

gradient algorithm was again used to minimize the output.  The resultant solution 

revealed the control variables shown in Table 12.  The solution was again applied to the 

training and test sets.  

Table 12: Optimization II Parameter Ranges 

Control Variable Value 

 3.500 
 2.774 

 2.856 

 2.295 

 0.249 

 

The receiver operating characteristics of Multiple PCA with the optimized 

parameters readily show the utility of the response surface method.  They are displayed in 

Figure 54.  Once again, there is a notable consistency between the training and test set 

and the operating points remain very consistent.   It seems as though optimizing the 

algorithm sensitivity for each score also showed some improvement in the ROC’s as 

well.  A detailed numerical comparison will be presented in Chapter IV.  

 

Yfinal  D1

Yfinal  D2

Yfinal  D3

Yfinal  D4

Yinitial
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Figure 54: ROC Optimization II Results 
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IV. Results and Analysis 

4.1 Chapter Overview 

This chapter offers an in depth numerical analysis of the algorithms introduced in 

Chapter III.  Average results comparing all algorithms considered in this research are 

shown in Table 13.  The rows are sorted by LA on the test set.  Contrasts between the 

Multiple PCA algorithm and the improved AutoGAD algorithm are of particular interest 

as they are the top performing algorithms. The GIPREBAD algorithm is also competitive, 

and so it will be compared to the AutoGAD algorithm as well.  The logistic PCA 

reconstruction error based anomaly detector did not perform well past the two images 

used for algorithm development, but results will still be presented as future research may 

enable successful anomaly detection using deep belief nets, Boltzmann machines, and 

autoencoders.   

Table 13:Average Results for Multiple Detectors Sorted by Test LA 

 

4.2 Multiple PCA and AutoGAD 

The Multiple PCA algorithm showed statistically significant improvements over 

the AutoGAD algorithm in the important performance measure of label accuracy for the 

test set.  In addition to this, the mean LA and TPF for Multiple PCA exceed that of 

AutoGAD for both training and test sets with both optimization I and optimization II 
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settings.  Furthermore, the mean FPF is less than that of AutoGAD for training and tests 

sets in both configurations as well.  The bin size (sensitivity) parameter Y = 300  was 

selected for AutoGAD, and the optimal settings found by Johnson (2008), were used for 

all other settings in the algorithm.  It is important to note that an RPD or RSM model was 

not created to re-optimize the AutoGAD parameters.    

One key advantage of the Multiple PCA algorithm over AutoGAD is its 

deterministic nature.  As described in 2.4.3, AutoGAD relies on an algorithm called 

FastICA that randomly generates initial solutions in its search for the independent 

components.  Thus, even on the same image, the algorithms performance and time for 

completion vary.  Generally performance characteristics were fairly consisted, but there 

were quite large variations in time required for algorithm completion.  Because of this 

random nature, AutoGAD results shown will include an * in order to indicate they are the 

mean of 30 repetitions.  This can be seen in Table 14 showing results for the training set.  

Here, the standard deviations are included to show the variations in label accuracy and 

time required for algorithm completion.   The variance of the TPF and FPF values were 

very small and were not considered meaningful for the training or test sets used in this 

research and are thus not shown in the results.  LA and TPF did vary enough to warrant 

consideration and as such their standard deviations are included.  
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Table 14: AutoGAD and Multiple PCA Training Results 

 

 In general, the completion time for AutoGAD is quite quick as one can note in 

both Table 14 and Table 15 showing the test results.  The algorithm runs in less than 1.2 

seconds for 9 out of the 14 images used in this research, but for the remaining 5 images 

the completion time is far slower.  Along with the difference in mean completion time is 

a drastic increase in time standard deviation.  Referencing image sizes in Table 6 and 

Table 7 reveals that larger images, and those with higher Fisher scores, seem to cause 

longer processing times. Despite its general quickness, these variability issues might be 

problematic if attempting to integrate AutoGAD on a sensor platform with limited 

processing power due to this high level of variability in processing time.  On the other 

hand, Multiple PCA is much more consistent and although Multiple PCA was only faster 

on 5 out of the 14 images, the mean processing time was still less than that of AutoGAD 

for both training and test sets.   The processing times for multiple PCA are much more 

predictable and seem to increase linearly with image size which may represent a major 

advantage if considering sensor integration.   
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Table 15: AutoGAD and Multiple PCA Test Results 

 

 In comparing the algorithms through the test set results shown in Table 15, it is 

readily apparent that the Multiple PCA outperforms AutoGAD in all mean performance 

statistics.  However, since all images are from the HYDICE sensor it could be that this is 

a matter of chance due to the slim margins separating the algorithms.  For this reason, a 

paired t-test is employed to determine the statistical significance of performance 

characteristic differences.  The paired test was chosen because of the correlation in results 

between the two algorithms from image to image; results on the same images for accurate 

anomaly detectors will most certainly not be independent.  All tests were conducted at the 

.05 confidence level and formulated as: 

 H0 :PmeasureA − PmeasureB = 0

HA :PmeasureA − PmeasureB ≠ 0
 (62)  

 

Where PmeasureA and PmeasureB are the TPF, FPF, or LA for each algorithm.  The null 

hypothesis is that the two performance measures are equal; while the alternate hypothesis 

is that they are not.  In order to form the test, the corresponding results for each image 

were subtracted from each other to form the ΔTPF, ΔFPF,  & ΔLA as shown in Table 16. 

The results for AutoGAD were subtracted from results for Multiple PCA; therefore, 

positive ΔTPF  and ΔLA  and negative ΔFPF  indicate better performance for Multiple 
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PCA.  It is important to note that the confidence intervals constructed assume it is 

appropriate to compare the statistics individually, and if they were compared 

simultaneously, the confidence intervals need to be considerably wider. 

Table 16: Paired t-tests Multiple PCA Optimization II & AutoGAD 

 

 The results of three separate paired t-tests are shown in Table 16 comparing 

performance statistics for Multiple PCA optimization II and AutoGAD. The null 

hypothesis that label accuracies of both AutoGAD and Multiple PCA are equal is 

rejected.  The corresponding p-values for the TPF, FPF, and LA tests are .124, .054, and 

.011.  Therefore, Multiple PCA offers a statistically significant improvement in LA over 

AutoGAD. There is not enough evidence to conclude that the average TPF or FPF for the 

Multiple PCA configuration is greater than the TPF for AutoGAD.  Similar results are 

shown in Table 17 for Multiple PCA Optimization I with corresponding p-values of .195, 

.056, and .014 for the TPF, FPF, and LA tests respectively.  The significant improvement 

Multiple PCA offers in LA is very operationally meaningful.  Higher label accuracy, also 

called positive predictive value, means that a higher percentage of anomalies declared are 

actually anomalies.  Thus, utilizing results from Multiple PCA as opposed to AutoGAD 
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would result in fewer resources wasted in the form of time spent by human analysts or 

computational time for spectral matching methods on false alarms.   

Table 17: Paired t-tests Multiple PCA Optimization I & AutoGAD 

 

 Real world hyperspectral image patches of natural scenes will are often devoid of 

pixels of interest or targets.  Conversely, the training and test sets were composed of 

staged hyperspectral images with a relatively high target density.  For this reason it was 

imperative to validate the proposed anomaly detection methods for oversensitivity. Table 

8 in section 3.2 described the validation set consisting of two images, ARES1C and 

ARES2C.  These images do not contain any targets and can be used to determine whether 

proposed algorithms have unacceptably high false alarm rates in low target density 

regions.  Unfortunately, the Multiple PCA algorithm seemed to have a troubling bias 

towards declaring targets in the two scenes.  The results on the validation images for both 

AutoGAD and Multiple PCA are shown in Table 18.   

Table 18: Initial Validation Results 
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 The results on the validation images may have rendered the Multiple PCA 

algorithm unusable.  It was especially troubling considering that its most meaningful 

improvement over AutoGAD was its significant edge in Label Accuracy, while the 

validation set results for multiple PCA revealed a label accuracy of zero.  The validation 

results certainly seem to confirm that AutoGAD is a more useful technique when 

considering its more reasonable FPFs.  Thus, the algorithm was modified slightly from 

the code described in Figure 44 in order to address the high FPF rate.  The fix came in the 

form of a test for detection score saliency using the signal to noise ratio of potential 

targets to background for each of the four D scores.  Before the anomaly declaration 

votes of a particular score would be counted, its signal to noise needed to exceed a given 

threshold, SNRthresh .  As in AutoGAD (Johnson, Williams, & Bauer, 2013) the pixel 

variability of the background was considered a measure of the power of the noise and the 

variability of potential anomalous pixels was considered the power of the signal.  The 

measure of signal to noise ratio is thusly calculated 

 

 
(63)  

Here, the potential target signal is the set of pixels declared as anomalous for each score 

on the algorithm’s second iteration while the background is simply those pixels not 

declared anomalous.   Some brief experimentation revealed that a threshold of

SNRthresh = 7performed well.  The results are reported in Table 19 where zero anomalies 

were declared in both of the validation images.   

SNRDi
=10log10

var( potential_target_signalDi
)

var(backgroundDi
)

⎛

⎝
⎜

⎞

⎠
⎟
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Table 19: Final Validation Results 

 

As would be expected, the signal to noise ratio based voting restriction also 

affected the operating characteristics of multiple PCA on both the training and test set.   

Fortunately, the results were not markedly different after this modification.  The test 

results for the altered algorithm are shown alongside the original results in Table 20 and 

Table 21 for Optimization I and Optimization II, respectively.  Note the slight increase in 

mean label accuracy for Optimization I with an accompanying decrease in the mean TPF 

and FPF rates.   A similar decrease in mean TPF and FPF was noticed for the settings 

derived in Optimization II, but with an accompanying slight decrease in mean LA.  

Interestingly, the average performance deficits are largely the result of poor performance 

on just one image, 6D_10kFT.  

Table 20: SNR Modification Results Optimization I 
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Table 21: SNR Modification Results Optimization II 

 

 Changes do not alter the results of the hypothesis tests performed above 

comparing AutoGAD with Multiple PCA.  This is shown graphically in Figure 55 and 

Figure 56 for Optimizations I and II, respectively.  The small blue dots show the actual 

deviations in the performance measures for the two algorithms, while the diamond 

represents the mean difference, a red line is drawn at zero, and 95% confidence intervals 

are shown in green.  The corresponding p-values for the TPF, FPF, and LA tests are .169, 

.061, and .015 for Optimization I and .538, .057, and .013 for Optimization II.  Once 

again, it is apparent that Multiple PCA significantly outperforms AutoGAD in LA while 

there is not a significant difference in performance in TPF and FPF.  Once again, LA is a 

highly important performance measure because high label accuracies result in fewer 

resources expended on false alarms.  
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Figure 55: Optimization I  Multiple PCA vs. AutoGAD (modified) 

 
Figure 56: Optimization II  Multiple PCA vs. AutoGAD (modified) 

 Perhaps unsurprisingly, there is not a statistically significant difference in the 

results from either Optimization I or Optimization II.  Some slight operational differences 

do exist.  The second optimization did offer slightly less processing times than the first.  

The time difference is generally due processing times required to construct histograms for 

the initial anomaly detection , as the Yinitial setting for Optimization II is .249 as opposed to 

.142 for Optimization I.  This results a very large number of bins for the first method and 

requires a large amount of memory.  Optimization II does offer slightly better TPF rates, 

but at the cost of higher FPF and lower LA.  Optimization II performance measures also 
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were more sensitive to the signal to noise ratio modification.  Further, it is more practical 

to adjust the single sensitivity parameter used in optimization I for final anomaly 

detection as opposed to four separate parameters in Optimization II; this might be a 

useful feature for an analyst.  Thus, despite the time difference between the two 

optimizations, the author recommends Optimization I for selecting parameters on new 

image classes.  

4.3 GIPREBAD and AutoGAD 

Table 22: AutoGAD and GIPREBAD Results 

 

The GIPREBAD algorithm performed fairly well despite it only actually 

representing one of the four members of the Multiple PCA ensemble.  GIPREBAD 

performed better than AutoGAD on FPF and LA while falling quite a bit behind in TPF 

as shown in Table 22.  The confidence intervals in Figure 57 show no statistical 
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difference between the two algorithms.  The p-values for the TPF, FPF, and LA tests are 

.165, .093, and .294, respectively.  Unfortunately, the assumption of correlation between 

the detectors in response to given imagery does come into question here, and as a result 

the paired t-test results may be misleading.  This is especially true in the TPF response 

where there is a large mean difference, but the extreme variability of the score differences 

causes the confidence interval to be quite large.   The author speculates that the difference 

would be statistically significant with a larger sample size.    

 
Figure 57: Paired t-tests AutoGAD & GIPREBAD 

The GIPREBAD algorithm is also quite a bit slower than Multiple PCA and 

timing is highly variable.  GIPREBAD thus suffers from the same inconsistency in 

algorithm completion time that AutoGAD does and also would be difficult to implement 

on a sensor platform with limited computational resources.  The iterative nature of 

GIPREBAD increases the time variability, and perhaps limiting the algorithm to one 

iteration would alleviate this problem but perhaps with a decrease in performance.  
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Table 23: GIPREBAD Validation Results 

 

GIPREBAD also performed very poorly on the validation images as evidenced in 

Table 23.  Unfortunately, a signal to noise ratio threshold in this algorithm is not quite as 

practical as in Multiple PCA due to a single score being used to elect anomalies.  The 

high false alarm rate evident in these validation images most likely renders the algorithm 

useless in real-world applications.  The algorithm results are, however, fairly promising 

and methods of alleviating this problem should be explored in future research. 

4.4 Logistic PCA Reconstruction Error Anomaly Detection Results 

The LogPCARD algorithm exhibited the poorest performance out of all the 

methods presented.  First and foremost, it was slow. Anomaly detection using only 

contrastive divergence to train the individual restricted Boltzmann machines took 17.0 

seconds on average. Adding ‘fine-tuning’ or backpropagation on the entire autoencoder 

required an average of 109.8 seconds to complete.  Interestingly, backpropagation did not 

result in meaningfully better performance characteristics as evidenced by the results 

presented in Table 24.  This is in contrast to the results for the two images used in 

algorithm development in Chapter III where ‘fine-tuning’ seemed to increase anomaly 

detection performance.   
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Table 24: Logistic PCA Combined Training & Test Results 

 

Thus, adding backpropagation is likely not a practical choice for anomaly 

declaration in HSI with the current algorithm configuration.  Of course, reducing the 

number of ‘fine-tuning’ epochs performed could prove to affect more reasonable 

processing times while still maintaining some improvements.  Further, a small amount of 

experimentation indicated that overtraining could be reducing the signal to noise ratio of 

the anomalies to the background and thus a smaller number of epochs for some images 

might enable better results.  Automating the monitoring of overtraining during 

backpropagation proved difficult and thus a consistent number of maximum iterations 

was chosen.  Future research might explore better ways of finding an acceptable balance 

with respect to this issue.  

It is important to note that the results in Table 24 were calculated using results 

from both the training and test sets to obtain more accurate performance estimations.  The 

algorithm was not trained on the test set and therefore it made little sense to divide the 

data for analysis.  Means and Variances in the performance metrics across all of the 

images for each of the proposed anomaly detection scores are shown in order to enable 

comparison between , , and .  Here, we see that the pixel reconstruction error 

variance, , generally shows the best and most consistent performance as it shows 

generally favorable means with modest levels of variance.    boasts the highest 

Q σ R
2 R2*

σ R
2

R2*
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average LA, but all of its performance metrics maintain a very high variance.  This is 

most likely due to its calculation requiring the comparison of two variances.  

4.5 Conclusions 

The Multiple PCA algorithm outperformed all of the methods considered in this 

research.  The voting ensemble facilitated consistent and accurate anomaly declarations 

despite noise and varying image scenes.  A SNR based voting threshold prevents 

anomaly declarations with sparsely targeted scenes.  GIPREBAD offered acceptable 

performance levels but at the price of longer processing times and less consistency as 

well as horrible results on the validation images. LogPCARD shows some potential, but 

the algorithm would not be practical for anomaly detection in HSI in its current form.  
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V. Discussion 

5.1 Limitations 

All of the HYDICE data used for algorithm testing and optimization in this 

research were captured in rural scenes, while urban environments would likely present a 

much less homogenous background and would most certainly create problems for the 

PCA based detectors.   The targets detected by the algorithms also only consisted of a 

few different vehicles, tarps, and tents.  Actual ‘real-world’ applications would contain a 

much more diverse target set with possibly no true knowledge of objects within a given 

scene.  Furthermore, the algorithms were developed across only a small set of forest and 

desert scenes collected under the Hyperspectral Digital Imagery Collection Experiment.  

HSI collected in different types of scenes, and with different sensors could require new 

algorithm parameters and further optimization.   

Although the Multiple PCA algorithm detected targets accurately and effectively 

in the set of HYDICE data set used in this research, some limitations of the algorithm 

should be considered.  One is the troubling high false positive rate on the two validation 

images, ARES1C and ARES2C before algorithm modification.  The SNR based voting 

threshold set to compensate for this is highly specific to the two validation images.  

Further testing and evaluation would be required to confirm that this method would 

operate consistently across other scenes that are sparsely populated with targets.  

Furthermore, despite the algorithm being relatively quick, it still demands a large amount 

of processing power.  This is due to repeated sorting and histogram construction and to a 

lesser extent, a large amount of IAN filtering.  Despite this, average processing times are 

still faster than the AutoGAD algorithm while offering better performance. 
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5.2 Suggestions for Future Research 

1) Re-optimize the AutoGAD algorithm with the new bin size parameter method 

through RPD or perhaps the RSM presented herein. 

2) Explore different structures and methods for the LogPCARD algorithm.  Gaussian 

inputs may represent the data better and be feasible with the right training 

parameters and enough processing power (attempt to use multiple graphics 

processor based training).  

3) Explore utilizing the Multiple PCA algorithm for other high dimensional data 

anomaly detection problems such as network intrusion or credit fraud prevention. 

4) Explore improving the GIPREBAD algorithm in order to limit false positives in 

sparsely targeted scenes through SNR or other methods. 

5) Customize sorting and histogram construction methods in Multiple PCA to avoid 

redundancy and lessen processing requirements. 

5.3 Original Contributions to the Field of Anomaly Detection 

1) PCA reconstruction error methods applied to HSI anomaly detection. 

2) Iterative anomaly detection using PCA reconstruction error such as to better 

approximate the background distribution. 

3) The voting ensemble of the Multiple PCA algorithm.  

4) Use of the median whitened PC score as a robust estimator to the Mahalanobis 

distance for anomaly detection.  

5) Logistic Principal Component Reconstruction Error Based Hyperspectral 

Anomaly Detection 

6) Introduced the “variance not explained” and the variance of reconstructive error 

scores for use in anomaly detection. 

7) Improvements on AutoGAD enabling ROC analysis and the automatically 

adjustable bin-size parameter. 
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5.4 Conclusions 

On October 22, 2010 The Defense Advanced Research Projects Agency 

(DARPA) announced a project entitled “Anomaly Detection at Multiple Scales” 

(ADAMS).  Thirty-five million dollars in funding was allocated for the two-year research 

mission intended to develop methods to detect and prevent insider threats such as the 

2009 Fort Hood shooting.  In order to succeed, weak signals of anomalous behavior 

would need to be detected within a noisy background of normal behavior.  Part of the 

announcement reads: 

“The general goal of the ADAMS program is to create, adapt and apply 
technology to the problem of anomaly characterization and detection in massive 
data sets. The importance of anomaly detection is due to the fact that anomalies in 
data translate to significant, and often critical, actionable information in a wide 
variety of application domains…. While technology developed for ADAMS will 
have applicability in many domains, we will use the problem of insider threat 
detection as a focal point in order to make sure that the work is well grounded 
(Defense Advanced Research Projects Agency, 2010).”    

 Although the ADAMS program focused on a much different problem, the 

relevance of anomaly detection is undeniable.  Data abundance seems to be eclipsing the 

speed of processors and thus efficient and effective algorithms that are able to handle 

large amounts of data are required.  The multiple PCA algorithm offers just such a 

method as it is simple, efficient, and accurate and also likely would be effective in other 

application domains where high dimensionality and noise increase detection difficulties 

and inflate false alarm rates.    
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